File size: 7,509 Bytes
bb3d050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- layoutlmv3
model-index:
- name: LayoutLM_Invoice6
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# LayoutLM_Invoice6

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0219
- Ax Amount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}
- Endor Name: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}
- Nvoice Number: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}
- Otal Amount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}
- Ustomer Address: {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11}
- Ustomer Name: {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11}
- Overall Precision: 0.9846
- Overall Recall: 0.9697
- Overall F1: 0.9771
- Overall Accuracy: 0.9939

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 6
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 300

### Training results

| Training Loss | Epoch | Step | Validation Loss | Ax Amount                                                                                | Endor Name                                                                                              | Nvoice Number                                                             | Otal Amount                                                                                             | Ustomer Address                                                                                         | Ustomer Name                                                                                            | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.8763        | 6.25  | 50   | 0.2290          | {'precision': 1.0, 'recall': 0.5454545454545454, 'f1': 0.7058823529411764, 'number': 11} | {'precision': 0.8181818181818182, 'recall': 0.8181818181818182, 'f1': 0.8181818181818182, 'number': 11} | {'precision': 1.0, 'recall': 0.8181818181818182, 'f1': 0.9, 'number': 11} | {'precision': 0.5454545454545454, 'recall': 0.5454545454545454, 'f1': 0.5454545454545454, 'number': 11} | {'precision': 0.7692307692307693, 'recall': 0.9090909090909091, 'f1': 0.8333333333333333, 'number': 11} | {'precision': 0.75, 'recall': 0.8181818181818182, 'f1': 0.7826086956521738, 'number': 11}               | 0.7903            | 0.7424         | 0.7656     | 0.9666           |
| 0.1315        | 12.5  | 100  | 0.0312          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                                              | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11}                | {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} | 0.9701            | 0.9848         | 0.9774     | 0.9970           |
| 0.0239        | 18.75 | 150  | 0.0371          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                                              | {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} | {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11}                | 0.9846            | 0.9697         | 0.9771     | 0.9939           |
| 0.0098        | 25.0  | 200  | 0.0450          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                                              | {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} | {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11}                | 0.9846            | 0.9697         | 0.9771     | 0.9939           |
| 0.0085        | 31.25 | 250  | 0.0360          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                                              | {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} | {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11}                | 0.9846            | 0.9697         | 0.9771     | 0.9939           |
| 0.0065        | 37.5  | 300  | 0.0219          | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                               | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                                              | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}                                              | {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} | {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11}                | 0.9846            | 0.9697         | 0.9771     | 0.9939           |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.2.0+cpu
- Datasets 2.12.0
- Tokenizers 0.13.2