File size: 9,508 Bytes
fe3447a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---

license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- layoutlmv3
model-index:
- name: Layoutlm_Inkaso_2
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Layoutlm_Inkaso_2

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1191
- Creditor address: {'precision': 0.9807692307692307, 'recall': 0.9622641509433962, 'f1': 0.9714285714285713, 'number': 53}
- Creditor name: {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 35}
- Creditor proxy: {'precision': 0.75, 'recall': 0.8823529411764706, 'f1': 0.8108108108108107, 'number': 34}
- Debtor address: {'precision': 0.9807692307692307, 'recall': 0.9807692307692307, 'f1': 0.9807692307692307, 'number': 52}
- Debtor name: {'precision': 0.926829268292683, 'recall': 0.95, 'f1': 0.9382716049382716, 'number': 40}
- Doc id: {'precision': 0.6875, 'recall': 0.6875, 'f1': 0.6875, 'number': 16}
- Title: {'precision': 0.9772727272727273, 'recall': 0.7678571428571429, 'f1': 0.86, 'number': 56}
- Overall Precision: 0.9217
- Overall Recall: 0.9056
- Overall F1: 0.9136
- Overall Accuracy: 0.9755

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05

- train_batch_size: 16

- eval_batch_size: 8

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_steps: 10
- num_epochs: 50



### Training results



| Training Loss | Epoch   | Step | Validation Loss | Creditor address                                                                                        | Creditor name                                                                                         | Creditor proxy                                                                                          | Debtor address                                                                                          | Debtor name                                                                               | Doc id                                                                    | Title                                                                                                   | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |

|:-------------:|:-------:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|

| 1.2524        | 6.6667  | 20   | 0.6528          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 53}                                              | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 35}                                            | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 34}                                              | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 52}                                              | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 40}                                | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 16}                | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 56}                                              | 0.0               | 0.0            | 0.0        | 0.8405           |

| 0.4371        | 13.3333 | 40   | 0.2820          | {'precision': 0.7457627118644068, 'recall': 0.8301886792452831, 'f1': 0.7857142857142858, 'number': 53} | {'precision': 0.868421052631579, 'recall': 0.9428571428571428, 'f1': 0.904109589041096, 'number': 35} | {'precision': 0.9166666666666666, 'recall': 0.3235294117647059, 'f1': 0.4782608695652174, 'number': 34} | {'precision': 0.6222222222222222, 'recall': 0.5384615384615384, 'f1': 0.577319587628866, 'number': 52}  | {'precision': 0.9375, 'recall': 0.375, 'f1': 0.5357142857142857, 'number': 40}            | {'precision': 0.8, 'recall': 0.5, 'f1': 0.6153846153846154, 'number': 16} | {'precision': 0.8235294117647058, 'recall': 0.75, 'f1': 0.7850467289719627, 'number': 56}               | 0.7835            | 0.6329         | 0.7002     | 0.9320           |

| 0.1154        | 20.0    | 60   | 0.1217          | {'precision': 1.0, 'recall': 0.9433962264150944, 'f1': 0.970873786407767, 'number': 53}                 | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 35}              | {'precision': 0.7666666666666667, 'recall': 0.6764705882352942, 'f1': 0.71875, 'number': 34}            | {'precision': 0.8947368421052632, 'recall': 0.9807692307692307, 'f1': 0.9357798165137614, 'number': 52} | {'precision': 0.9142857142857143, 'recall': 0.8, 'f1': 0.8533333333333333, 'number': 40}  | {'precision': 0.6875, 'recall': 0.6875, 'f1': 0.6875, 'number': 16}       | {'precision': 0.9565217391304348, 'recall': 0.7857142857142857, 'f1': 0.8627450980392156, 'number': 56} | 0.9111            | 0.8601         | 0.8849     | 0.9682           |

| 0.0263        | 26.6667 | 80   | 0.1306          | {'precision': 0.9803921568627451, 'recall': 0.9433962264150944, 'f1': 0.9615384615384616, 'number': 53} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 35}              | {'precision': 0.7307692307692307, 'recall': 0.5588235294117647, 'f1': 0.6333333333333334, 'number': 34} | {'precision': 0.9807692307692307, 'recall': 0.9807692307692307, 'f1': 0.9807692307692307, 'number': 52} | {'precision': 0.926829268292683, 'recall': 0.95, 'f1': 0.9382716049382716, 'number': 40}  | {'precision': 0.6875, 'recall': 0.6875, 'f1': 0.6875, 'number': 16}       | {'precision': 1.0, 'recall': 0.7857142857142857, 'f1': 0.88, 'number': 56}                              | 0.9323            | 0.8671         | 0.8986     | 0.9704           |

| 0.0113        | 33.3333 | 100  | 0.1161          | {'precision': 0.9803921568627451, 'recall': 0.9433962264150944, 'f1': 0.9615384615384616, 'number': 53} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 35}              | {'precision': 0.75, 'recall': 0.8823529411764706, 'f1': 0.8108108108108107, 'number': 34}               | {'precision': 1.0, 'recall': 0.9807692307692307, 'f1': 0.9902912621359222, 'number': 52}                | {'precision': 0.9285714285714286, 'recall': 0.975, 'f1': 0.951219512195122, 'number': 40} | {'precision': 0.6875, 'recall': 0.6875, 'f1': 0.6875, 'number': 16}       | {'precision': 1.0, 'recall': 0.75, 'f1': 0.8571428571428571, 'number': 56}                              | 0.9281            | 0.9021         | 0.9149     | 0.9755           |

| 0.0079        | 40.0    | 120  | 0.1306          | {'precision': 0.9803921568627451, 'recall': 0.9433962264150944, 'f1': 0.9615384615384616, 'number': 53} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 35}              | {'precision': 0.7272727272727273, 'recall': 0.7058823529411765, 'f1': 0.7164179104477613, 'number': 34} | {'precision': 1.0, 'recall': 0.9807692307692307, 'f1': 0.9902912621359222, 'number': 52}                | {'precision': 0.926829268292683, 'recall': 0.95, 'f1': 0.9382716049382716, 'number': 40}  | {'precision': 0.6875, 'recall': 0.6875, 'f1': 0.6875, 'number': 16}       | {'precision': 1.0, 'recall': 0.7678571428571429, 'f1': 0.8686868686868687, 'number': 56}                | 0.9299            | 0.8811         | 0.9048     | 0.9727           |

| 0.0064        | 46.6667 | 140  | 0.1191          | {'precision': 0.9807692307692307, 'recall': 0.9622641509433962, 'f1': 0.9714285714285713, 'number': 53} | {'precision': 0.9722222222222222, 'recall': 1.0, 'f1': 0.9859154929577464, 'number': 35}              | {'precision': 0.75, 'recall': 0.8823529411764706, 'f1': 0.8108108108108107, 'number': 34}               | {'precision': 0.9807692307692307, 'recall': 0.9807692307692307, 'f1': 0.9807692307692307, 'number': 52} | {'precision': 0.926829268292683, 'recall': 0.95, 'f1': 0.9382716049382716, 'number': 40}  | {'precision': 0.6875, 'recall': 0.6875, 'f1': 0.6875, 'number': 16}       | {'precision': 0.9772727272727273, 'recall': 0.7678571428571429, 'f1': 0.86, 'number': 56}               | 0.9217            | 0.9056         | 0.9136     | 0.9755           |





### Framework versions



- Transformers 4.40.1

- Pytorch 2.3.0+cu118

- Datasets 2.19.0

- Tokenizers 0.19.1