--- base_model: - unsloth/Meta-Llama-3.1-8B - unsloth/Meta-Llama-3.1-8B-Instruct library_name: transformers tags: - mergekit - merge model-index: - name: Meta-Llama-3.1-8B-Instruct-TIES results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 54.24 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/Meta-Llama-3.1-8B-Instruct-TIES name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 29.77 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/Meta-Llama-3.1-8B-Instruct-TIES name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 20.02 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/Meta-Llama-3.1-8B-Instruct-TIES name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 5.93 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/Meta-Llama-3.1-8B-Instruct-TIES name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 8.04 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/Meta-Llama-3.1-8B-Instruct-TIES name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 30.89 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=T145/Meta-Llama-3.1-8B-Instruct-TIES name: Open LLM Leaderboard --- # Rombo Llama Merge Test This merge provides a baseline for performance when the instruct model is merged on the base. It follows Rombodawg's merge method on Qwen models, and should prove if it works with Llama models. Running hypothesis is that the IFEval benchmark will get nuked. A success will be little to no performance change over the vanilla instruct model. ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [unsloth/Meta-Llama-3.1-8B](https://huggingface.co/unsloth/Meta-Llama-3.1-8B) as a base. ### Models Merged The following models were included in the merge: * [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: unsloth/Meta-Llama-3.1-8B dtype: bfloat16 merge_method: ties parameters: density: 1.0 weight: 1.0 slices: - sources: - layer_range: [0, 32] model: unsloth/Meta-Llama-3.1-8B-Instruct parameters: density: 1.0 weight: 1.0 - layer_range: [0, 32] model: unsloth/Meta-Llama-3.1-8B tokenizer_source: unsloth/Meta-Llama-3.1-8B-Instruct ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/T145__Meta-Llama-3.1-8B-Instruct-TIES-details)! Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=T145/Meta-Llama-3.1-8B-Instruct-TIES)! | Metric |% Value| |-------------------|------:| |Avg. | 24.81| |IFEval (0-Shot) | 54.24| |BBH (3-Shot) | 29.77| |MATH Lvl 5 (4-Shot)| 20.02| |GPQA (0-shot) | 5.93| |MuSR (0-shot) | 8.04| |MMLU-PRO (5-shot) | 30.89|