File size: 18,529 Bytes
4e56534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33b90ca
c08ffac
4e56534
 
 
 
 
 
0105673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e56534
 
0105673
4e56534
 
 
 
 
0105673
4e56534
 
17ab7f9
0105673
17ab7f9
4e56534
17ab7f9
 
0105673
 
4e56534
 
0105673
46fa060
eb62d3d
4e56534
 
0105673
 
 
 
 
 
 
 
4e56534
 
0105673
 
 
 
 
 
17ab7f9
0105673
4e56534
 
 
 
 
 
0105673
4e56534
 
 
 
0105673
4e56534
 
 
0105673
4e56534
 
 
0105673
4e56534
0105673
a190ef4
 
0105673
a190ef4
4e56534
 
a190ef4
 
0105673
 
 
 
 
 
 
17ab7f9
 
 
 
a190ef4
4e56534
0105673
 
4e56534
 
 
 
 
 
 
 
 
 
17ab7f9
f854f4b
17ab7f9
 
 
4e56534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb62d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e56534
 
 
 
 
 
 
 
 
17ab7f9
4e56534
 
 
 
 
 
 
 
 
a190ef4
 
 
 
4e56534
 
17ab7f9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
---
license: other
license_link: https://huggingface.co/THUDM/CogVideoX-5b/blob/main/LICENSE
language:
  - en
tags:
  - cogvideox
  - video-generation
  - thudm
  - text-to-video
inference: false
---

# CogVideoX-5B

<p style="text-align: center;">
  <div align="center">
  <img src=https://github.com/THUDM/CogVideo/raw/main/resources/logo.svg width="50%"/>
  </div>
  <p align="center">
  <a href="https://huggingface.co/THUDM/CogVideoX-5b/blob/main/README_zh.md">πŸ“„ δΈ­ζ–‡ι˜…θ―»</a> | 
  <a href="https://huggingface.co/spaces/THUDM/CogVideoX-5B-Space">πŸ€— Huggingface Space</a> |
  <a href="https://github.com/THUDM/CogVideo">🌐 Github </a> | 
  <a href="https://arxiv.org/pdf/2408.06072">πŸ“œ arxiv </a>
</p>

## Demo Show

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Video Gallery with Captions</title>
    <style>
        .video-container {
            display: flex;
            flex-wrap: wrap;
            justify-content: space-around;
        }
        .video-item {
            width: 45%;
            margin-bottom: 20px;
            transition: transform 0.3s;
        }
        .video-item:hover {
            transform: scale(1.1);
        }
        .caption {
            text-align: center;
            margin-top: 10px;
            font-size: 11px;
        }
    </style>
</head>
<body>
    <div class="video-container">
        <div class="video-item">
            <video width="100%" controls>
                <source src="https://github.com/user-attachments/assets/cf5953ea-96d3-48fd-9907-c4708752c714" type="video/mp4">
            </video>
            <div class="caption">A garden comes to life as a kaleidoscope of butterflies flutters amidst the blossoms, their delicate wings casting shadows on the petals below. In the background, a grand fountain cascades water with a gentle splendor, its rhythmic sound providing a soothing backdrop. Beneath the cool shade of a mature tree, a solitary wooden chair invites solitude and reflection, its smooth surface worn by the touch of countless visitors seeking a moment of tranquility in nature's embrace.</div>
        </div>
        <div class="video-item">
            <video width="100%" controls>
                <source src="https://github.com/user-attachments/assets/fe0a78e6-b669-4800-8cf0-b5f9b5145b52" type="video/mp4">
            </video>
            <div class="caption">A small boy, head bowed and determination etched on his face, sprints through the torrential downpour as lightning crackles and thunder rumbles in the distance. The relentless rain pounds the ground, creating a chaotic dance of water droplets that mirror the dramatic sky's anger. In the far background, the silhouette of a cozy home beckons, a faint beacon of safety and warmth amidst the fierce weather. The scene is one of perseverance and the unyielding spirit of a child braving the elements.</div>
        </div>
        <div class="video-item">
            <video width="100%" controls>
                <source src="https://github.com/user-attachments/assets/c182f606-8f8c-421d-b414-8487070fcfcb" type="video/mp4">
            </video>
            <div class="caption">A suited astronaut, with the red dust of Mars clinging to their boots, reaches out to shake hands with an alien being, their skin a shimmering blue, under the pink-tinged sky of the fourth planet. In the background, a sleek silver rocket, a beacon of human ingenuity, stands tall, its engines powered down, as the two representatives of different worlds exchange a historic greeting amidst the desolate beauty of the Martian landscape.</div>
        </div>
        <div class="video-item">
            <video width="100%" controls>
                <source src="https://github.com/user-attachments/assets/7db2bbce-194d-434d-a605-350254b6c298" type="video/mp4">
            </video>
            <div class="caption">An elderly gentleman, with a serene expression, sits at the water's edge, a steaming cup of tea by his side. He is engrossed in his artwork, brush in hand, as he renders an oil painting on a canvas that's propped up against a small, weathered table. The sea breeze whispers through his silver hair, gently billowing his loose-fitting white shirt, while the salty air adds an intangible element to his masterpiece in progress. The scene is one of tranquility and inspiration, with the artist's canvas capturing the vibrant hues of the setting sun reflecting off the tranquil sea.</div>
        </div>
        <div class="video-item">
            <video width="100%" controls>
                <source src="https://github.com/user-attachments/assets/62b01046-8cab-44cc-bd45-4d965bb615ec" type="video/mp4">
            </video>
            <div class="caption">In a dimly lit bar, purplish light bathes the face of a mature man, his eyes blinking thoughtfully as he ponders in close-up, the background artfully blurred to focus on his introspective expression, the ambiance of the bar a mere suggestion of shadows and soft lighting.</div>
        </div>
        <div class="video-item">
            <video width="100%" controls>
                <source src="https://github.com/user-attachments/assets/d78e552a-4b3f-4b81-ac3f-3898079554f6" type="video/mp4">
            </video>
            <div class="caption">A golden retriever, sporting sleek black sunglasses, with its lengthy fur flowing in the breeze, sprints playfully across a rooftop terrace, recently refreshed by a light rain. The scene unfolds from a distance, the dog's energetic bounds growing larger as it approaches the camera, its tail wagging with unrestrained joy, while droplets of water glisten on the concrete behind it. The overcast sky provides a dramatic backdrop, emphasizing the vibrant golden coat of the canine as it dashes towards the viewer.</div>
        </div>
        <div class="video-item">
            <video width="100%" controls>
                <source src="https://github.com/user-attachments/assets/30894f12-c741-44a2-9e6e-ddcacc231e5b" type="video/mp4">
            </video>
            <div class="caption">On a brilliant sunny day, the lakeshore is lined with an array of willow trees, their slender branches swaying gently in the soft breeze. The tranquil surface of the lake reflects the clear blue sky, while several elegant swans glide gracefully through the still water, leaving behind delicate ripples that disturb the mirror-like quality of the lake. The scene is one of serene beauty, with the willows' greenery providing a picturesque frame for the peaceful avian visitors.</div>
        </div>
        <div class="video-item">
            <video width="100%" controls>
                <source src="https://github.com/user-attachments/assets/926575ca-7150-435b-a0ff-4900a963297b" type="video/mp4">
            </video>
            <div class="caption">A Chinese mother, draped in a soft, pastel-colored robe, gently rocks back and forth in a cozy rocking chair positioned in the tranquil setting of a nursery. The dimly lit bedroom is adorned with whimsical mobiles dangling from the ceiling, casting shadows that dance on the walls. Her baby, swaddled in a delicate, patterned blanket, rests against her chest, the child's earlier cries now replaced by contented coos as the mother's soothing voice lulls the little one to sleep. The scent of lavender fills the air, adding to the serene atmosphere, while a warm, orange glow from a nearby nightlight illuminates the scene with a gentle hue, capturing a moment of tender love and comfort.</div>
        </div>
    </div>
</body>
</html>

## Model Introduction

CogVideoX is an open-source version of the video generation model originating from [QingYing](https://chatglm.cn/video?fr=osm_cogvideo). The table below displays the list of video generation models we currently offer, along with their foundational information.

<table style="border-collapse: collapse; width: 100%;">
  <tr>
    <th style="text-align: center;">Model Name</th>
    <th style="text-align: center;">CogVideoX-2B</th>
    <th style="text-align: center;">CogVideoX-5B (This Repository)</th>
  </tr>
  <tr>
    <td style="text-align: center;">Model Description</td>
    <td style="text-align: center;">Entry-level model, balancing compatibility. Low cost for running and secondary development.</td>
    <td style="text-align: center;">Larger model with higher video generation quality and better visual effects.</td>
  </tr>
  <tr>
    <td style="text-align: center;">Inference Precision</td>
    <td style="text-align: center;"><b>FP16* (Recommended)</b>, BF16, FP32, FP8*, INT8, no support for INT4</td>
    <td style="text-align: center;"><b>BF16 (Recommended)</b>, FP16, FP32, FP8*, INT8, no support for INT4</td>
  </tr>
  <tr>
    <td style="text-align: center;">Single GPU VRAM Consumption</td>
    <td style="text-align: center;">FP16: 18GB using <a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> / <b>12.5GB* using diffusers</b><br><b>INT8: 7.8GB* using diffusers with torchao</b></td>
    <td style="text-align: center;">BF16: 26GB using <a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> / <b>20.7GB* using diffusers</b><br><b>INT8: 11.4GB* using diffusers with torchao</b></td>
  </tr>
  <tr>
    <td style="text-align: center;">Multi-GPU Inference VRAM Consumption</td>
    <td style="text-align: center;"><b>FP16: 10GB* using diffusers</b></td>
    <td style="text-align: center;"><b>BF16: 15GB* using diffusers</b></td>
  </tr>
  <tr>
    <td style="text-align: center;">Inference Speed<br>(Step = 50, FP/BF16)</td>
    <td style="text-align: center;">Single A100: ~90 seconds<br>Single H100: ~45 seconds</td>
    <td style="text-align: center;">Single A100: ~180 seconds<br>Single H100: ~90 seconds</td>
  </tr>
  <tr>
    <td style="text-align: center;">Fine-tuning Precision</td>
    <td style="text-align: center;"><b>FP16</b></td>
    <td style="text-align: center;"><b>BF16</b></td>
  </tr>
  <tr>
    <td style="text-align: center;">Fine-tuning VRAM Consumption (per GPU)</td>
    <td style="text-align: center;">47 GB (bs=1, LORA)<br> 61 GB (bs=2, LORA)<br> 62GB (bs=1, SFT)</td>
    <td style="text-align: center;">63 GB (bs=1, LORA)<br> 80 GB (bs=2, LORA)<br> 75GB (bs=1, SFT)</td>
  </tr>
  <tr>
    <td style="text-align: center;">Prompt Language</td>
    <td colspan="2" style="text-align: center;">English*</td>
  </tr>
  <tr>
    <td style="text-align: center;">Prompt Length Limit</td>
    <td colspan="2" style="text-align: center;">226 Tokens</td>
  </tr>
  <tr>
    <td style="text-align: center;">Video Length</td>
    <td colspan="2" style="text-align: center;">6 Seconds</td>
  </tr>
  <tr>
    <td style="text-align: center;">Frame Rate</td>
    <td colspan="2" style="text-align: center;">8 Frames per Second</td>
  </tr>
  <tr>
    <td style="text-align: center;">Video Resolution</td>
    <td colspan="2" style="text-align: center;">720 x 480, no support for other resolutions (including fine-tuning)</td>
  </tr>
  <tr>
    <td style="text-align: center;">Positional Encoding</td>
    <td style="text-align: center;">3d_sincos_pos_embed</td>
    <td style="text-align: center;">3d_rope_pos_embed</td>
  </tr>
</table>

**Data Explanation**

- When testing with the diffusers library, the `enable_model_cpu_offload()` option and `pipe.vae.enable_tiling()` optimization were enabled. This solution has not been tested for actual VRAM/memory usage on devices other than **NVIDIA A100/H100**. Generally, this solution can be adapted to all devices with **NVIDIA Ampere architecture** and above. If optimization is disabled, VRAM usage will increase significantly, with peak VRAM approximately 3 times the value in the table.
- When performing multi-GPU inference, the `enable_model_cpu_offload()` optimization needs to be disabled.
- Using an INT8 model will result in reduced inference speed. This is done to accommodate GPUs with lower VRAM, allowing inference to run properly with minimal video quality loss, though the inference speed will be significantly reduced.
- The 2B model is trained using `FP16` precision, while the 5B model is trained using `BF16` precision. It is recommended to use the precision used in model training for inference.
- `FP8` precision must be used on `NVIDIA H100` and above devices, requiring source installation of the `torch`, `torchao`, `diffusers`, and `accelerate` Python packages. `CUDA 12.4` is recommended.
- Inference speed testing also used the aforementioned VRAM optimization scheme. Without VRAM optimization, inference speed increases by about 10%. Only models using `diffusers` support quantization.
- The model only supports English input; other languages can be translated to English during large model refinements.

**Note**

+ Using [SAT](https://github.com/THUDM/SwissArmyTransformer)  for inference and fine-tuning of SAT version
  models. Feel free to visit our GitHub for more information.



## Quick Start πŸ€—

This model supports deployment using the huggingface diffusers library. You can deploy it by following these steps.

**We recommend that you visit our [GitHub](https://github.com/THUDM/CogVideo) and check out the relevant prompt
optimizations and conversions to get a better experience.**

1. Install the required dependencies

```shell
# diffusers>=0.30.1
# transformers>=4.44.2
# accelerate>=0.33.0 (suggest install from source)
# imageio-ffmpeg>=0.5.1
pip install --upgrade transformers accelerate diffusers imageio-ffmpeg 
```

2. Run the code

```python
import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video

prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."

pipe = CogVideoXPipeline.from_pretrained(
    "THUDM/CogVideoX-5b",
    torch_dtype=torch.bfloat16
)

pipe.enable_model_cpu_offload()
pipe.vae.enable_tiling()

video = pipe(
    prompt=prompt,
    num_videos_per_prompt=1,
    num_inference_steps=50,
    num_frames=49,
    guidance_scale=6,
    generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]

export_to_video(video, "output.mp4", fps=8)
```

## Quantized Inference

[PytorchAO](https://github.com/pytorch/ao) and [Optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be used to quantize the Text Encoder, Transformer and VAE modules to lower the memory requirement of CogVideoX. This makes it possible to run the model on free-tier T4 Colab or smaller VRAM GPUs as well! It is also worth noting that TorchAO quantization is fully compatible with `torch.compile`, which allows for much faster inference speed.

```diff
# To get started, PytorchAO needs to be installed from the GitHub source and PyTorch Nightly.
# Source and nightly installation is only required until next release.

import torch
from diffusers import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, CogVideoXPipeline
from diffusers.utils import export_to_video
+ from transformers import T5EncoderModel
+ from torchao.quantization import quantize_, int8_weight_only, int8_dynamic_activation_int8_weight

+ quantization = int8_weight_only

+ text_encoder = T5EncoderModel.from_pretrained("THUDM/CogVideoX-5b", subfolder="text_encoder", torch_dtype=torch.bfloat16)
+ quantize_(text_encoder, quantization())

+ transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16)
+ quantize_(transformer, quantization())

+ vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-5b", subfolder="vae", torch_dtype=torch.bfloat16)
+ quantize_(vae, quantization())

# Create pipeline and run inference
pipe = CogVideoXPipeline.from_pretrained(
    "THUDM/CogVideoX-5b",
+    text_encoder=text_encoder,
+    transformer=transformer,
+    vae=vae,
    torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
pipe.vae.enable_tiling()

prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."

video = pipe(
    prompt=prompt,
    num_videos_per_prompt=1,
    num_inference_steps=50,
    num_frames=49,
    guidance_scale=6,
    generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]

export_to_video(video, "output.mp4", fps=8)
```

Additionally, the models can be serialized and stored in a quantized datatype to save disk space when using PytorchAO. Find examples and benchmarks at these links:
- [torchao](https://gist.github.com/a-r-r-o-w/4d9732d17412888c885480c6521a9897)
- [quanto](https://gist.github.com/a-r-r-o-w/31be62828b00a9292821b85c1017effa)


## Explore the Model

Welcome to our [github](https://github.com/THUDM/CogVideo), where you will find:

1. More detailed technical details and code explanation.
2. Optimization and conversion of prompt words.
3. Reasoning and fine-tuning of SAT version models, and even pre-release.
4. Project update log dynamics, more interactive opportunities.
5. CogVideoX toolchain to help you better use the model.
6. INT8 model inference code support.

## Model License

This model is released under the [CogVideoX LICENSE](LICENSE).

## Citation

```
@article{yang2024cogvideox,
  title={CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer},
  author={Yang, Zhuoyi and Teng, Jiayan and Zheng, Wendi and Ding, Ming and Huang, Shiyu and Xu, Jiazheng and Yang, Yuanming and Hong, Wenyi and Zhang, Xiaohan and Feng, Guanyu and others},
  journal={arXiv preprint arXiv:2408.06072},
  year={2024}
}
```