File size: 19,520 Bytes
4e56534 33b90ca c08ffac 4e56534 d2b1ebe 4e56534 0105673 4e56534 d2b1ebe 4e56534 0105673 4e56534 17ab7f9 0105673 17ab7f9 4e56534 17ab7f9 0105673 4e56534 d2b1ebe 8d6ea3f d2b1ebe 4e56534 0105673 4e56534 0105673 17ab7f9 0105673 4e56534 0105673 4e56534 0105673 4e56534 0105673 4e56534 0105673 4e56534 0105673 a190ef4 0105673 a190ef4 4e56534 a190ef4 d2b1ebe 17ab7f9 a190ef4 4e56534 17ab7f9 f854f4b 17ab7f9 4e56534 eb62d3d d2b1ebe eb62d3d d2b1ebe eb62d3d 4e56534 17ab7f9 4e56534 a190ef4 4e56534 17ab7f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
---
license: other
license_link: https://huggingface.co/THUDM/CogVideoX-5b/blob/main/LICENSE
language:
- en
tags:
- cogvideox
- video-generation
- thudm
- text-to-video
inference: false
---
# CogVideoX-5B
<p style="text-align: center;">
<div align="center">
<img src=https://github.com/THUDM/CogVideo/raw/main/resources/logo.svg width="50%"/>
</div>
<p align="center">
<a href="https://huggingface.co/THUDM/CogVideoX-5b/blob/main/README_zh.md">π δΈζι
θ―»</a> |
<a href="https://huggingface.co/spaces/THUDM/CogVideoX-5B-Space">π€ Huggingface Space</a> |
<a href="https://github.com/THUDM/CogVideo">π Github </a> |
<a href="https://arxiv.org/pdf/2408.06072">π arxiv </a>
</p>
<p align="center">
π Visit <a href="https://chatglm.cn/video?lang=en?fr=osm_cogvideo">QingYing</a> and <a href="https://open.bigmodel.cn/?utm_campaign=open&_channel_track_key=OWTVNma9">API Platform</a> to experience commercial video generation models.
</p>
## Demo Show
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Video Gallery with Captions</title>
<style>
.video-container {
display: flex;
flex-wrap: wrap;
justify-content: space-around;
}
.video-item {
width: 45%;
margin-bottom: 20px;
transition: transform 0.3s;
}
.video-item:hover {
transform: scale(1.1);
}
.caption {
text-align: center;
margin-top: 10px;
font-size: 11px;
}
</style>
</head>
<body>
<div class="video-container">
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/user-attachments/assets/cf5953ea-96d3-48fd-9907-c4708752c714" type="video/mp4">
</video>
<div class="caption">A garden comes to life as a kaleidoscope of butterflies flutters amidst the blossoms, their delicate wings casting shadows on the petals below. In the background, a grand fountain cascades water with a gentle splendor, its rhythmic sound providing a soothing backdrop. Beneath the cool shade of a mature tree, a solitary wooden chair invites solitude and reflection, its smooth surface worn by the touch of countless visitors seeking a moment of tranquility in nature's embrace.</div>
</div>
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/user-attachments/assets/fe0a78e6-b669-4800-8cf0-b5f9b5145b52" type="video/mp4">
</video>
<div class="caption">A small boy, head bowed and determination etched on his face, sprints through the torrential downpour as lightning crackles and thunder rumbles in the distance. The relentless rain pounds the ground, creating a chaotic dance of water droplets that mirror the dramatic sky's anger. In the far background, the silhouette of a cozy home beckons, a faint beacon of safety and warmth amidst the fierce weather. The scene is one of perseverance and the unyielding spirit of a child braving the elements.</div>
</div>
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/user-attachments/assets/c182f606-8f8c-421d-b414-8487070fcfcb" type="video/mp4">
</video>
<div class="caption">A suited astronaut, with the red dust of Mars clinging to their boots, reaches out to shake hands with an alien being, their skin a shimmering blue, under the pink-tinged sky of the fourth planet. In the background, a sleek silver rocket, a beacon of human ingenuity, stands tall, its engines powered down, as the two representatives of different worlds exchange a historic greeting amidst the desolate beauty of the Martian landscape.</div>
</div>
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/user-attachments/assets/7db2bbce-194d-434d-a605-350254b6c298" type="video/mp4">
</video>
<div class="caption">An elderly gentleman, with a serene expression, sits at the water's edge, a steaming cup of tea by his side. He is engrossed in his artwork, brush in hand, as he renders an oil painting on a canvas that's propped up against a small, weathered table. The sea breeze whispers through his silver hair, gently billowing his loose-fitting white shirt, while the salty air adds an intangible element to his masterpiece in progress. The scene is one of tranquility and inspiration, with the artist's canvas capturing the vibrant hues of the setting sun reflecting off the tranquil sea.</div>
</div>
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/user-attachments/assets/62b01046-8cab-44cc-bd45-4d965bb615ec" type="video/mp4">
</video>
<div class="caption">In a dimly lit bar, purplish light bathes the face of a mature man, his eyes blinking thoughtfully as he ponders in close-up, the background artfully blurred to focus on his introspective expression, the ambiance of the bar a mere suggestion of shadows and soft lighting.</div>
</div>
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/user-attachments/assets/d78e552a-4b3f-4b81-ac3f-3898079554f6" type="video/mp4">
</video>
<div class="caption">A golden retriever, sporting sleek black sunglasses, with its lengthy fur flowing in the breeze, sprints playfully across a rooftop terrace, recently refreshed by a light rain. The scene unfolds from a distance, the dog's energetic bounds growing larger as it approaches the camera, its tail wagging with unrestrained joy, while droplets of water glisten on the concrete behind it. The overcast sky provides a dramatic backdrop, emphasizing the vibrant golden coat of the canine as it dashes towards the viewer.</div>
</div>
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/user-attachments/assets/30894f12-c741-44a2-9e6e-ddcacc231e5b" type="video/mp4">
</video>
<div class="caption">On a brilliant sunny day, the lakeshore is lined with an array of willow trees, their slender branches swaying gently in the soft breeze. The tranquil surface of the lake reflects the clear blue sky, while several elegant swans glide gracefully through the still water, leaving behind delicate ripples that disturb the mirror-like quality of the lake. The scene is one of serene beauty, with the willows' greenery providing a picturesque frame for the peaceful avian visitors.</div>
</div>
<div class="video-item">
<video width="100%" controls>
<source src="https://github.com/user-attachments/assets/926575ca-7150-435b-a0ff-4900a963297b" type="video/mp4">
</video>
<div class="caption">A Chinese mother, draped in a soft, pastel-colored robe, gently rocks back and forth in a cozy rocking chair positioned in the tranquil setting of a nursery. The dimly lit bedroom is adorned with whimsical mobiles dangling from the ceiling, casting shadows that dance on the walls. Her baby, swaddled in a delicate, patterned blanket, rests against her chest, the child's earlier cries now replaced by contented coos as the mother's soothing voice lulls the little one to sleep. The scent of lavender fills the air, adding to the serene atmosphere, while a warm, orange glow from a nearby nightlight illuminates the scene with a gentle hue, capturing a moment of tender love and comfort.</div>
</div>
</div>
</body>
</html>
## Model Introduction
CogVideoX is an open-source version of the video generation model originating
from [QingYing](https://chatglm.cn/video?lang=en?fr=osm_cogvideo). The table below displays the list of video generation
models we currently offer, along with their foundational information.
<table style="border-collapse: collapse; width: 100%;">
<tr>
<th style="text-align: center;">Model Name</th>
<th style="text-align: center;">CogVideoX-2B</th>
<th style="text-align: center;">CogVideoX-5B (This Repository)</th>
</tr>
<tr>
<td style="text-align: center;">Model Description</td>
<td style="text-align: center;">Entry-level model, balancing compatibility. Low cost for running and secondary development.</td>
<td style="text-align: center;">Larger model with higher video generation quality and better visual effects.</td>
</tr>
<tr>
<td style="text-align: center;">Inference Precision</td>
<td style="text-align: center;"><b>FP16* (Recommended)</b>, BF16, FP32, FP8*, INT8, no support for INT4</td>
<td style="text-align: center;"><b>BF16 (Recommended)</b>, FP16, FP32, FP8*, INT8, no support for INT4</td>
</tr>
<tr>
<td style="text-align: center;">Single GPU VRAM Consumption<br></td>
<td style="text-align: center;"><a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> FP16: 18GB <br><b>diffusers FP16: starting from 4GB*</b><br><b>diffusers INT8(torchao): starting from 3.6GB*</b></td>
<td style="text-align: center;"><a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> BF16: 26GB <br><b>diffusers BF16: starting from 5GB*</b><br><b>diffusers INT8(torchao): starting from 4.4GB*</b></td>
</tr>
<tr>
<td style="text-align: center;">Multi-GPU Inference VRAM Consumption</td>
<td style="text-align: center;"><b>FP16: 10GB* using diffusers</b></td>
<td style="text-align: center;"><b>BF16: 15GB* using diffusers</b></td>
</tr>
<tr>
<td style="text-align: center;">Inference Speed<br>(Step = 50, FP/BF16)</td>
<td style="text-align: center;">Single A100: ~90 seconds<br>Single H100: ~45 seconds</td>
<td style="text-align: center;">Single A100: ~180 seconds<br>Single H100: ~90 seconds</td>
</tr>
<tr>
<td style="text-align: center;">Fine-tuning Precision</td>
<td style="text-align: center;"><b>FP16</b></td>
<td style="text-align: center;"><b>BF16</b></td>
</tr>
<tr>
<td style="text-align: center;">Fine-tuning VRAM Consumption (per GPU)</td>
<td style="text-align: center;">47 GB (bs=1, LORA)<br> 61 GB (bs=2, LORA)<br> 62GB (bs=1, SFT)</td>
<td style="text-align: center;">63 GB (bs=1, LORA)<br> 80 GB (bs=2, LORA)<br> 75GB (bs=1, SFT)</td>
</tr>
<tr>
<td style="text-align: center;">Prompt Language</td>
<td colspan="2" style="text-align: center;">English*</td>
</tr>
<tr>
<td style="text-align: center;">Prompt Length Limit</td>
<td colspan="2" style="text-align: center;">226 Tokens</td>
</tr>
<tr>
<td style="text-align: center;">Video Length</td>
<td colspan="2" style="text-align: center;">6 Seconds</td>
</tr>
<tr>
<td style="text-align: center;">Frame Rate</td>
<td colspan="2" style="text-align: center;">8 Frames per Second</td>
</tr>
<tr>
<td style="text-align: center;">Video Resolution</td>
<td colspan="2" style="text-align: center;">720 x 480, no support for other resolutions (including fine-tuning)</td>
</tr>
<tr>
<td style="text-align: center;">Positional Encoding</td>
<td style="text-align: center;">3d_sincos_pos_embed</td>
<td style="text-align: center;">3d_rope_pos_embed</td>
</tr>
</table>
**Data Explanation**
+ When testing using the `diffusers` library, all optimizations provided by the `diffusers` library were enabled. This
solution has not been tested for actual VRAM/memory usage on devices other than **NVIDIA A100 / H100**. Generally,
this solution can be adapted to all devices with **NVIDIA Ampere architecture** and above. If the optimizations are
disabled, VRAM usage will increase significantly, with peak VRAM usage being about 3 times higher than the table
shows. However, speed will increase by 3-4 times. You can selectively disable some optimizations, including:
```
pipe.enable_model_cpu_offload()
pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
```
+ When performing multi-GPU inference, the `enable_model_cpu_offload()` optimization needs to be disabled.
+ Using INT8 models will reduce inference speed. This is to ensure that GPUs with lower VRAM can perform inference
normally while maintaining minimal video quality loss, though inference speed will decrease significantly.
+ The 2B model is trained with `FP16` precision, and the 5B model is trained with `BF16` precision. We recommend using
the precision the model was trained with for inference.
+ [PytorchAO](https://github.com/pytorch/ao) and [Optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be
used to quantize the text encoder, Transformer, and VAE modules to reduce CogVideoX's memory requirements. This makes
it possible to run the model on a free T4 Colab or GPUs with smaller VRAM! It is also worth noting that TorchAO
quantization is fully compatible with `torch.compile`, which can significantly improve inference speed. `FP8`
precision must be used on devices with `NVIDIA H100` or above, which requires installing
the `torch`, `torchao`, `diffusers`, and `accelerate` Python packages from source. `CUDA 12.4` is recommended.
+ The inference speed test also used the above VRAM optimization scheme. Without VRAM optimization, inference speed
increases by about 10%. Only the `diffusers` version of the model supports quantization.
+ The model only supports English input; other languages can be translated into English during refinement by a large
model.
**Note**
+ Using [SAT](https://github.com/THUDM/SwissArmyTransformer) for inference and fine-tuning of SAT version
models. Feel free to visit our GitHub for more information.
## Quick Start π€
This model supports deployment using the huggingface diffusers library. You can deploy it by following these steps.
**We recommend that you visit our [GitHub](https://github.com/THUDM/CogVideo) and check out the relevant prompt
optimizations and conversions to get a better experience.**
1. Install the required dependencies
```shell
# diffusers>=0.30.1
# transformers>=4.44.2
# accelerate>=0.33.0 (suggest install from source)
# imageio-ffmpeg>=0.5.1
pip install --upgrade transformers accelerate diffusers imageio-ffmpeg
```
2. Run the code
```python
import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
pipe = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-5b",
torch_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload()
pipe.vae.enable_tiling()
video = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)
```
## Quantized Inference
[PytorchAO](https://github.com/pytorch/ao) and [Optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be
used to quantize the Text Encoder, Transformer and VAE modules to lower the memory requirement of CogVideoX. This makes
it possible to run the model on free-tier T4 Colab or smaller VRAM GPUs as well! It is also worth noting that TorchAO
quantization is fully compatible with `torch.compile`, which allows for much faster inference speed.
```diff
# To get started, PytorchAO needs to be installed from the GitHub source and PyTorch Nightly.
# Source and nightly installation is only required until next release.
import torch
from diffusers import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, CogVideoXPipeline
from diffusers.utils import export_to_video
+ from transformers import T5EncoderModel
+ from torchao.quantization import quantize_, int8_weight_only, int8_dynamic_activation_int8_weight
+ quantization = int8_weight_only
+ text_encoder = T5EncoderModel.from_pretrained("THUDM/CogVideoX-5b", subfolder="text_encoder", torch_dtype=torch.bfloat16)
+ quantize_(text_encoder, quantization())
+ transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16)
+ quantize_(transformer, quantization())
+ vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-5b", subfolder="vae", torch_dtype=torch.bfloat16)
+ quantize_(vae, quantization())
# Create pipeline and run inference
pipe = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-5b",
+ text_encoder=text_encoder,
+ transformer=transformer,
+ vae=vae,
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
pipe.vae.enable_tiling()
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
video = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)
```
Additionally, the models can be serialized and stored in a quantized datatype to save disk space when using PytorchAO.
Find examples and benchmarks at these links:
- [torchao](https://gist.github.com/a-r-r-o-w/4d9732d17412888c885480c6521a9897)
- [quanto](https://gist.github.com/a-r-r-o-w/31be62828b00a9292821b85c1017effa)
## Explore the Model
Welcome to our [github](https://github.com/THUDM/CogVideo), where you will find:
1. More detailed technical details and code explanation.
2. Optimization and conversion of prompt words.
3. Reasoning and fine-tuning of SAT version models, and even pre-release.
4. Project update log dynamics, more interactive opportunities.
5. CogVideoX toolchain to help you better use the model.
6. INT8 model inference code support.
## Model License
This model is released under the [CogVideoX LICENSE](LICENSE).
## Citation
```
@article{yang2024cogvideox,
title={CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer},
author={Yang, Zhuoyi and Teng, Jiayan and Zheng, Wendi and Ding, Ming and Huang, Shiyu and Xu, Jiazheng and Yang, Yuanming and Hong, Wenyi and Zhang, Xiaohan and Feng, Guanyu and others},
journal={arXiv preprint arXiv:2408.06072},
year={2024}
}
```
|