davidlvxin commited on
Commit
2210ed7
1 Parent(s): 6c70f72

Upload folder using huggingface_hub

Browse files
.mdl ADDED
Binary file (49 Bytes). View file
 
.msc ADDED
Binary file (1.11 kB). View file
 
.mv ADDED
@@ -0,0 +1 @@
 
 
1
+ Revision:master,CreatedAt:1723441815
config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "THUDM/LongWriter-glm4-9b",
3
+ "add_bias_linear": false,
4
+ "add_qkv_bias": true,
5
+ "apply_query_key_layer_scaling": true,
6
+ "apply_residual_connection_post_layernorm": false,
7
+ "architectures": [
8
+ "ChatGLMForConditionalGeneration"
9
+ ],
10
+ "attention_dropout": 0.0,
11
+ "attention_softmax_in_fp32": true,
12
+ "auto_map": {
13
+ "AutoConfig": "configuration_chatglm.ChatGLMConfig",
14
+ "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
15
+ "AutoModelForCausalLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
16
+ "AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
17
+ "AutoModelForSequenceClassification": "modeling_chatglm.ChatGLMForSequenceClassification"
18
+ },
19
+ "bias_dropout_fusion": true,
20
+ "classifier_dropout": null,
21
+ "eos_token_id": [
22
+ 151329,
23
+ 151336,
24
+ 151338
25
+ ],
26
+ "ffn_hidden_size": 13696,
27
+ "fp32_residual_connection": false,
28
+ "hidden_dropout": 0.0,
29
+ "hidden_size": 4096,
30
+ "kv_channels": 128,
31
+ "layernorm_epsilon": 1.5625e-07,
32
+ "model_type": "chatglm",
33
+ "multi_query_attention": true,
34
+ "multi_query_group_num": 2,
35
+ "num_attention_heads": 32,
36
+ "num_hidden_layers": 40,
37
+ "num_layers": 40,
38
+ "original_rope": true,
39
+ "pad_token_id": 151329,
40
+ "padded_vocab_size": 151552,
41
+ "post_layer_norm": true,
42
+ "rmsnorm": true,
43
+ "rope_ratio": 500,
44
+ "seq_length": 1048576,
45
+ "tie_word_embeddings": false,
46
+ "torch_dtype": "bfloat16",
47
+ "transformers_version": "4.43.0",
48
+ "use_cache": true,
49
+ "vocab_size": 151552
50
+ }
configuration_chatglm.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class ChatGLMConfig(PretrainedConfig):
5
+ model_type = "chatglm"
6
+
7
+ def __init__(
8
+ self,
9
+ num_layers=28,
10
+ padded_vocab_size=65024,
11
+ hidden_size=4096,
12
+ ffn_hidden_size=13696,
13
+ kv_channels=128,
14
+ num_attention_heads=32,
15
+ seq_length=2048,
16
+ hidden_dropout=0.0,
17
+ classifier_dropout=None,
18
+ attention_dropout=0.0,
19
+ layernorm_epsilon=1e-5,
20
+ rmsnorm=True,
21
+ apply_residual_connection_post_layernorm=False,
22
+ post_layer_norm=True,
23
+ add_bias_linear=False,
24
+ add_qkv_bias=False,
25
+ bias_dropout_fusion=True,
26
+ multi_query_attention=False,
27
+ multi_query_group_num=1,
28
+ rope_ratio=1,
29
+ apply_query_key_layer_scaling=True,
30
+ attention_softmax_in_fp32=True,
31
+ fp32_residual_connection=False,
32
+ **kwargs
33
+ ):
34
+ self.num_layers = num_layers
35
+ self.vocab_size = padded_vocab_size
36
+ self.padded_vocab_size = padded_vocab_size
37
+ self.hidden_size = hidden_size
38
+ self.ffn_hidden_size = ffn_hidden_size
39
+ self.kv_channels = kv_channels
40
+ self.num_attention_heads = num_attention_heads
41
+ self.seq_length = seq_length
42
+ self.hidden_dropout = hidden_dropout
43
+ self.classifier_dropout = classifier_dropout
44
+ self.attention_dropout = attention_dropout
45
+ self.layernorm_epsilon = layernorm_epsilon
46
+ self.rmsnorm = rmsnorm
47
+ self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
48
+ self.post_layer_norm = post_layer_norm
49
+ self.add_bias_linear = add_bias_linear
50
+ self.add_qkv_bias = add_qkv_bias
51
+ self.bias_dropout_fusion = bias_dropout_fusion
52
+ self.multi_query_attention = multi_query_attention
53
+ self.multi_query_group_num = multi_query_group_num
54
+ self.rope_ratio = rope_ratio
55
+ self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
56
+ self.attention_softmax_in_fp32 = attention_softmax_in_fp32
57
+ self.fp32_residual_connection = fp32_residual_connection
58
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "eos_token_id": [
4
+ 151329,
5
+ 151336,
6
+ 151338
7
+ ],
8
+ "pad_token_id": 151329,
9
+ "transformers_version": "4.43.0"
10
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38fcd3e38c291c7b63f7c784de99acf2008ed2b9813dc6cb69c3f5e497dab001
3
+ size 4984147224
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d4f93dc73feb92a370018365f84dfe9fc0e368576f6f366c8eb5d2736967676
3
+ size 4895071360
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b3364e4b4f21a8dd4cce49b92cf0749f2d87d4ebcdb8eb96f5b576b7bc9ea3e
3
+ size 4895071384
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a703a6e77ec1fceca638c89c82901283e5a384313c50c842da9068b3a6e135aa
3
+ size 4025651256
model.safetensors.index.json ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 18799902784
4
+ },
5
+ "weight_map": {
6
+ "transformer.embedding.word_embeddings.weight": "model-00001-of-00004.safetensors",
7
+ "transformer.encoder.final_layernorm.weight": "model-00004-of-00004.safetensors",
8
+ "transformer.encoder.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "transformer.encoder.layers.0.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
10
+ "transformer.encoder.layers.0.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
11
+ "transformer.encoder.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
12
+ "transformer.encoder.layers.0.self_attention.dense.weight": "model-00001-of-00004.safetensors",
13
+ "transformer.encoder.layers.0.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
14
+ "transformer.encoder.layers.0.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
15
+ "transformer.encoder.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
16
+ "transformer.encoder.layers.1.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
17
+ "transformer.encoder.layers.1.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
18
+ "transformer.encoder.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
19
+ "transformer.encoder.layers.1.self_attention.dense.weight": "model-00001-of-00004.safetensors",
20
+ "transformer.encoder.layers.1.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
21
+ "transformer.encoder.layers.1.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
22
+ "transformer.encoder.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
23
+ "transformer.encoder.layers.10.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
24
+ "transformer.encoder.layers.10.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
25
+ "transformer.encoder.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
26
+ "transformer.encoder.layers.10.self_attention.dense.weight": "model-00002-of-00004.safetensors",
27
+ "transformer.encoder.layers.10.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
28
+ "transformer.encoder.layers.10.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
29
+ "transformer.encoder.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
30
+ "transformer.encoder.layers.11.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
31
+ "transformer.encoder.layers.11.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
32
+ "transformer.encoder.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "transformer.encoder.layers.11.self_attention.dense.weight": "model-00002-of-00004.safetensors",
34
+ "transformer.encoder.layers.11.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
35
+ "transformer.encoder.layers.11.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
36
+ "transformer.encoder.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "transformer.encoder.layers.12.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
38
+ "transformer.encoder.layers.12.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
39
+ "transformer.encoder.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "transformer.encoder.layers.12.self_attention.dense.weight": "model-00002-of-00004.safetensors",
41
+ "transformer.encoder.layers.12.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
42
+ "transformer.encoder.layers.12.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
43
+ "transformer.encoder.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
44
+ "transformer.encoder.layers.13.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
45
+ "transformer.encoder.layers.13.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
46
+ "transformer.encoder.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
47
+ "transformer.encoder.layers.13.self_attention.dense.weight": "model-00002-of-00004.safetensors",
48
+ "transformer.encoder.layers.13.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
49
+ "transformer.encoder.layers.13.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
50
+ "transformer.encoder.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
51
+ "transformer.encoder.layers.14.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
52
+ "transformer.encoder.layers.14.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
53
+ "transformer.encoder.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "transformer.encoder.layers.14.self_attention.dense.weight": "model-00002-of-00004.safetensors",
55
+ "transformer.encoder.layers.14.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
56
+ "transformer.encoder.layers.14.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
57
+ "transformer.encoder.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "transformer.encoder.layers.15.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
59
+ "transformer.encoder.layers.15.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
60
+ "transformer.encoder.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "transformer.encoder.layers.15.self_attention.dense.weight": "model-00002-of-00004.safetensors",
62
+ "transformer.encoder.layers.15.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
63
+ "transformer.encoder.layers.15.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
64
+ "transformer.encoder.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
65
+ "transformer.encoder.layers.16.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
66
+ "transformer.encoder.layers.16.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
67
+ "transformer.encoder.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
68
+ "transformer.encoder.layers.16.self_attention.dense.weight": "model-00002-of-00004.safetensors",
69
+ "transformer.encoder.layers.16.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
70
+ "transformer.encoder.layers.16.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
71
+ "transformer.encoder.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "transformer.encoder.layers.17.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
73
+ "transformer.encoder.layers.17.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
74
+ "transformer.encoder.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
75
+ "transformer.encoder.layers.17.self_attention.dense.weight": "model-00002-of-00004.safetensors",
76
+ "transformer.encoder.layers.17.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
77
+ "transformer.encoder.layers.17.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
78
+ "transformer.encoder.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
79
+ "transformer.encoder.layers.18.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
80
+ "transformer.encoder.layers.18.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
81
+ "transformer.encoder.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
82
+ "transformer.encoder.layers.18.self_attention.dense.weight": "model-00002-of-00004.safetensors",
83
+ "transformer.encoder.layers.18.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
84
+ "transformer.encoder.layers.18.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
85
+ "transformer.encoder.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
86
+ "transformer.encoder.layers.19.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
87
+ "transformer.encoder.layers.19.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
88
+ "transformer.encoder.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
89
+ "transformer.encoder.layers.19.self_attention.dense.weight": "model-00002-of-00004.safetensors",
90
+ "transformer.encoder.layers.19.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
91
+ "transformer.encoder.layers.19.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
92
+ "transformer.encoder.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
93
+ "transformer.encoder.layers.2.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
94
+ "transformer.encoder.layers.2.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
95
+ "transformer.encoder.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
96
+ "transformer.encoder.layers.2.self_attention.dense.weight": "model-00001-of-00004.safetensors",
97
+ "transformer.encoder.layers.2.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
98
+ "transformer.encoder.layers.2.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
99
+ "transformer.encoder.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
100
+ "transformer.encoder.layers.20.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
101
+ "transformer.encoder.layers.20.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
102
+ "transformer.encoder.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "transformer.encoder.layers.20.self_attention.dense.weight": "model-00002-of-00004.safetensors",
104
+ "transformer.encoder.layers.20.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
105
+ "transformer.encoder.layers.20.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
106
+ "transformer.encoder.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
107
+ "transformer.encoder.layers.21.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
108
+ "transformer.encoder.layers.21.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
109
+ "transformer.encoder.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
110
+ "transformer.encoder.layers.21.self_attention.dense.weight": "model-00002-of-00004.safetensors",
111
+ "transformer.encoder.layers.21.self_attention.query_key_value.bias": "model-00002-of-00004.safetensors",
112
+ "transformer.encoder.layers.21.self_attention.query_key_value.weight": "model-00002-of-00004.safetensors",
113
+ "transformer.encoder.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
114
+ "transformer.encoder.layers.22.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
115
+ "transformer.encoder.layers.22.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
116
+ "transformer.encoder.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "transformer.encoder.layers.22.self_attention.dense.weight": "model-00003-of-00004.safetensors",
118
+ "transformer.encoder.layers.22.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
119
+ "transformer.encoder.layers.22.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
120
+ "transformer.encoder.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "transformer.encoder.layers.23.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
122
+ "transformer.encoder.layers.23.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
123
+ "transformer.encoder.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
124
+ "transformer.encoder.layers.23.self_attention.dense.weight": "model-00003-of-00004.safetensors",
125
+ "transformer.encoder.layers.23.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
126
+ "transformer.encoder.layers.23.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
127
+ "transformer.encoder.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
128
+ "transformer.encoder.layers.24.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
129
+ "transformer.encoder.layers.24.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
130
+ "transformer.encoder.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
131
+ "transformer.encoder.layers.24.self_attention.dense.weight": "model-00003-of-00004.safetensors",
132
+ "transformer.encoder.layers.24.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
133
+ "transformer.encoder.layers.24.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
134
+ "transformer.encoder.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "transformer.encoder.layers.25.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
136
+ "transformer.encoder.layers.25.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
137
+ "transformer.encoder.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
138
+ "transformer.encoder.layers.25.self_attention.dense.weight": "model-00003-of-00004.safetensors",
139
+ "transformer.encoder.layers.25.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
140
+ "transformer.encoder.layers.25.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
141
+ "transformer.encoder.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
142
+ "transformer.encoder.layers.26.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
143
+ "transformer.encoder.layers.26.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
144
+ "transformer.encoder.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "transformer.encoder.layers.26.self_attention.dense.weight": "model-00003-of-00004.safetensors",
146
+ "transformer.encoder.layers.26.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
147
+ "transformer.encoder.layers.26.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
148
+ "transformer.encoder.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
149
+ "transformer.encoder.layers.27.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
150
+ "transformer.encoder.layers.27.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
151
+ "transformer.encoder.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
152
+ "transformer.encoder.layers.27.self_attention.dense.weight": "model-00003-of-00004.safetensors",
153
+ "transformer.encoder.layers.27.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
154
+ "transformer.encoder.layers.27.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
155
+ "transformer.encoder.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
156
+ "transformer.encoder.layers.28.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
157
+ "transformer.encoder.layers.28.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
158
+ "transformer.encoder.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
159
+ "transformer.encoder.layers.28.self_attention.dense.weight": "model-00003-of-00004.safetensors",
160
+ "transformer.encoder.layers.28.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
161
+ "transformer.encoder.layers.28.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
162
+ "transformer.encoder.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
163
+ "transformer.encoder.layers.29.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
164
+ "transformer.encoder.layers.29.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
165
+ "transformer.encoder.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "transformer.encoder.layers.29.self_attention.dense.weight": "model-00003-of-00004.safetensors",
167
+ "transformer.encoder.layers.29.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
168
+ "transformer.encoder.layers.29.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
169
+ "transformer.encoder.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
170
+ "transformer.encoder.layers.3.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
171
+ "transformer.encoder.layers.3.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
172
+ "transformer.encoder.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
173
+ "transformer.encoder.layers.3.self_attention.dense.weight": "model-00001-of-00004.safetensors",
174
+ "transformer.encoder.layers.3.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
175
+ "transformer.encoder.layers.3.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
176
+ "transformer.encoder.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "transformer.encoder.layers.30.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
178
+ "transformer.encoder.layers.30.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
179
+ "transformer.encoder.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "transformer.encoder.layers.30.self_attention.dense.weight": "model-00003-of-00004.safetensors",
181
+ "transformer.encoder.layers.30.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
182
+ "transformer.encoder.layers.30.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
183
+ "transformer.encoder.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "transformer.encoder.layers.31.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
185
+ "transformer.encoder.layers.31.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
186
+ "transformer.encoder.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
187
+ "transformer.encoder.layers.31.self_attention.dense.weight": "model-00003-of-00004.safetensors",
188
+ "transformer.encoder.layers.31.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
189
+ "transformer.encoder.layers.31.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
190
+ "transformer.encoder.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
191
+ "transformer.encoder.layers.32.mlp.dense_4h_to_h.weight": "model-00003-of-00004.safetensors",
192
+ "transformer.encoder.layers.32.mlp.dense_h_to_4h.weight": "model-00003-of-00004.safetensors",
193
+ "transformer.encoder.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
194
+ "transformer.encoder.layers.32.self_attention.dense.weight": "model-00003-of-00004.safetensors",
195
+ "transformer.encoder.layers.32.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
196
+ "transformer.encoder.layers.32.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
197
+ "transformer.encoder.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "transformer.encoder.layers.33.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
199
+ "transformer.encoder.layers.33.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
200
+ "transformer.encoder.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "transformer.encoder.layers.33.self_attention.dense.weight": "model-00003-of-00004.safetensors",
202
+ "transformer.encoder.layers.33.self_attention.query_key_value.bias": "model-00003-of-00004.safetensors",
203
+ "transformer.encoder.layers.33.self_attention.query_key_value.weight": "model-00003-of-00004.safetensors",
204
+ "transformer.encoder.layers.34.input_layernorm.weight": "model-00004-of-00004.safetensors",
205
+ "transformer.encoder.layers.34.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
206
+ "transformer.encoder.layers.34.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
207
+ "transformer.encoder.layers.34.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
208
+ "transformer.encoder.layers.34.self_attention.dense.weight": "model-00004-of-00004.safetensors",
209
+ "transformer.encoder.layers.34.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
210
+ "transformer.encoder.layers.34.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
211
+ "transformer.encoder.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
212
+ "transformer.encoder.layers.35.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
213
+ "transformer.encoder.layers.35.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
214
+ "transformer.encoder.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
215
+ "transformer.encoder.layers.35.self_attention.dense.weight": "model-00004-of-00004.safetensors",
216
+ "transformer.encoder.layers.35.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
217
+ "transformer.encoder.layers.35.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
218
+ "transformer.encoder.layers.36.input_layernorm.weight": "model-00004-of-00004.safetensors",
219
+ "transformer.encoder.layers.36.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
220
+ "transformer.encoder.layers.36.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
221
+ "transformer.encoder.layers.36.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
222
+ "transformer.encoder.layers.36.self_attention.dense.weight": "model-00004-of-00004.safetensors",
223
+ "transformer.encoder.layers.36.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
224
+ "transformer.encoder.layers.36.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
225
+ "transformer.encoder.layers.37.input_layernorm.weight": "model-00004-of-00004.safetensors",
226
+ "transformer.encoder.layers.37.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
227
+ "transformer.encoder.layers.37.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
228
+ "transformer.encoder.layers.37.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
229
+ "transformer.encoder.layers.37.self_attention.dense.weight": "model-00004-of-00004.safetensors",
230
+ "transformer.encoder.layers.37.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
231
+ "transformer.encoder.layers.37.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
232
+ "transformer.encoder.layers.38.input_layernorm.weight": "model-00004-of-00004.safetensors",
233
+ "transformer.encoder.layers.38.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
234
+ "transformer.encoder.layers.38.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
235
+ "transformer.encoder.layers.38.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
236
+ "transformer.encoder.layers.38.self_attention.dense.weight": "model-00004-of-00004.safetensors",
237
+ "transformer.encoder.layers.38.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
238
+ "transformer.encoder.layers.38.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
239
+ "transformer.encoder.layers.39.input_layernorm.weight": "model-00004-of-00004.safetensors",
240
+ "transformer.encoder.layers.39.mlp.dense_4h_to_h.weight": "model-00004-of-00004.safetensors",
241
+ "transformer.encoder.layers.39.mlp.dense_h_to_4h.weight": "model-00004-of-00004.safetensors",
242
+ "transformer.encoder.layers.39.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
243
+ "transformer.encoder.layers.39.self_attention.dense.weight": "model-00004-of-00004.safetensors",
244
+ "transformer.encoder.layers.39.self_attention.query_key_value.bias": "model-00004-of-00004.safetensors",
245
+ "transformer.encoder.layers.39.self_attention.query_key_value.weight": "model-00004-of-00004.safetensors",
246
+ "transformer.encoder.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "transformer.encoder.layers.4.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
248
+ "transformer.encoder.layers.4.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
249
+ "transformer.encoder.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
250
+ "transformer.encoder.layers.4.self_attention.dense.weight": "model-00001-of-00004.safetensors",
251
+ "transformer.encoder.layers.4.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
252
+ "transformer.encoder.layers.4.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
253
+ "transformer.encoder.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
254
+ "transformer.encoder.layers.5.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
255
+ "transformer.encoder.layers.5.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
256
+ "transformer.encoder.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
257
+ "transformer.encoder.layers.5.self_attention.dense.weight": "model-00001-of-00004.safetensors",
258
+ "transformer.encoder.layers.5.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
259
+ "transformer.encoder.layers.5.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
260
+ "transformer.encoder.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "transformer.encoder.layers.6.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
262
+ "transformer.encoder.layers.6.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
263
+ "transformer.encoder.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
264
+ "transformer.encoder.layers.6.self_attention.dense.weight": "model-00001-of-00004.safetensors",
265
+ "transformer.encoder.layers.6.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
266
+ "transformer.encoder.layers.6.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
267
+ "transformer.encoder.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
268
+ "transformer.encoder.layers.7.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
269
+ "transformer.encoder.layers.7.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
270
+ "transformer.encoder.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
271
+ "transformer.encoder.layers.7.self_attention.dense.weight": "model-00001-of-00004.safetensors",
272
+ "transformer.encoder.layers.7.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
273
+ "transformer.encoder.layers.7.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
274
+ "transformer.encoder.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
275
+ "transformer.encoder.layers.8.mlp.dense_4h_to_h.weight": "model-00001-of-00004.safetensors",
276
+ "transformer.encoder.layers.8.mlp.dense_h_to_4h.weight": "model-00001-of-00004.safetensors",
277
+ "transformer.encoder.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
278
+ "transformer.encoder.layers.8.self_attention.dense.weight": "model-00001-of-00004.safetensors",
279
+ "transformer.encoder.layers.8.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
280
+ "transformer.encoder.layers.8.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
281
+ "transformer.encoder.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
282
+ "transformer.encoder.layers.9.mlp.dense_4h_to_h.weight": "model-00002-of-00004.safetensors",
283
+ "transformer.encoder.layers.9.mlp.dense_h_to_4h.weight": "model-00002-of-00004.safetensors",
284
+ "transformer.encoder.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "transformer.encoder.layers.9.self_attention.dense.weight": "model-00001-of-00004.safetensors",
286
+ "transformer.encoder.layers.9.self_attention.query_key_value.bias": "model-00001-of-00004.safetensors",
287
+ "transformer.encoder.layers.9.self_attention.query_key_value.weight": "model-00001-of-00004.safetensors",
288
+ "transformer.output_layer.weight": "model-00004-of-00004.safetensors",
289
+ "transformer.rotary_pos_emb.inv_freq": "model-00001-of-00004.safetensors"
290
+ }
291
+ }
modeling_chatglm.py ADDED
@@ -0,0 +1,900 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch ChatGLM model. """
2
+
3
+ import math
4
+ import copy
5
+ import warnings
6
+ import re
7
+ import sys
8
+
9
+ import torch
10
+ import torch.utils.checkpoint
11
+ import torch.nn.functional as F
12
+ from torch import nn
13
+ from torch.nn import CrossEntropyLoss, LayerNorm
14
+ from torch.nn.utils import skip_init
15
+ from typing import Optional, Tuple, Union, List, Callable, Dict, Any
16
+
17
+ from transformers.modeling_outputs import (
18
+ BaseModelOutputWithPast,
19
+ CausalLMOutputWithPast,
20
+ )
21
+ from transformers.modeling_utils import PreTrainedModel
22
+ from transformers.utils import logging
23
+ from transformers.generation.logits_process import LogitsProcessor
24
+ from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
25
+
26
+ from .configuration_chatglm import ChatGLMConfig
27
+ from einops import rearrange
28
+ try:
29
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func
30
+ except ImportError:
31
+ try:
32
+ # FlashAttention-2
33
+ from flash_attn.flash_attn_interface import flash_attn_varlen_func as flash_attn_unpadded_func
34
+ except ImportError:
35
+ flash_attn_unpadded_func = None
36
+
37
+ # flags required to enable jit fusion kernels
38
+
39
+ if sys.platform != 'darwin':
40
+ torch._C._jit_set_profiling_mode(False)
41
+ torch._C._jit_set_profiling_executor(False)
42
+ torch._C._jit_override_can_fuse_on_cpu(True)
43
+ torch._C._jit_override_can_fuse_on_gpu(True)
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM2-6B"
48
+ _CONFIG_FOR_DOC = "ChatGLM6BConfig"
49
+
50
+ CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
51
+ "THUDM/chatglm2-6b",
52
+ # See all ChatGLM models at https://huggingface.co/models?filter=chatglm
53
+ ]
54
+
55
+ def default_init(cls, *args, **kwargs):
56
+ return cls(*args, **kwargs)
57
+
58
+
59
+ class InvalidScoreLogitsProcessor(LogitsProcessor):
60
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
61
+ if torch.isnan(scores).any() or torch.isinf(scores).any():
62
+ scores.zero_()
63
+ scores[..., 5] = 5e4
64
+ return scores
65
+
66
+ def split_tensor_along_last_dim(
67
+ tensor: torch.Tensor,
68
+ num_partitions: int,
69
+ contiguous_split_chunks: bool = False,
70
+ ) -> List[torch.Tensor]:
71
+ """Split a tensor along its last dimension.
72
+
73
+ Arguments:
74
+ tensor: input tensor.
75
+ num_partitions: number of partitions to split the tensor
76
+ contiguous_split_chunks: If True, make each chunk contiguous
77
+ in memory.
78
+
79
+ Returns:
80
+ A list of Tensors
81
+ """
82
+ # Get the size and dimension.
83
+ last_dim = tensor.dim() - 1
84
+ last_dim_size = tensor.size()[last_dim] // num_partitions
85
+ # Split.
86
+ tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
87
+ # Note: torch.split does not create contiguous tensors by default.
88
+ if contiguous_split_chunks:
89
+ return tuple(chunk.contiguous() for chunk in tensor_list)
90
+
91
+ return tensor_list
92
+
93
+
94
+ class RotaryEmbedding(nn.Module):
95
+ def __init__(self, dim, rope_ratio=1, original_impl=False, device=None, dtype=None):
96
+ super().__init__()
97
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
98
+ self.register_buffer("inv_freq", inv_freq)
99
+ self.dim = dim
100
+ self.original_impl = original_impl
101
+ self.rope_ratio = rope_ratio
102
+
103
+ def forward_impl(
104
+ self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
105
+ ):
106
+ """Enhanced Transformer with Rotary Position Embedding.
107
+
108
+ Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
109
+ transformers/rope/__init__.py. MIT License:
110
+ https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
111
+ """
112
+ # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
113
+
114
+ base = base * self.rope_ratio
115
+ theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem))
116
+
117
+ # Create position indexes `[0, 1, ..., seq_len - 1]`
118
+ seq_idx = torch.arange(seq_len, dtype=torch.float, device=device)
119
+
120
+ # Calculate the product of position index and $\theta_i$
121
+ idx_theta = torch.outer(seq_idx, theta).float()
122
+
123
+ cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
124
+
125
+ # this is to mimic the behaviour of complex32, else we will get different results
126
+ if dtype in (torch.float16, torch.bfloat16, torch.int8):
127
+ cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
128
+ return cache
129
+
130
+ def forward(self, max_seq_len, offset=0):
131
+ return self.forward_impl(
132
+ max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
133
+ )
134
+
135
+
136
+ @torch.jit.script
137
+ def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
138
+ # x: [sq, b, np, hn]
139
+ sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
140
+ rot_dim = rope_cache.shape[-2] * 2
141
+ x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
142
+ # truncate to support variable sizes
143
+ rope_cache = rope_cache[:sq]
144
+ xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
145
+ rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
146
+ x_out2 = torch.stack(
147
+ [
148
+ xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
149
+ xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
150
+ ],
151
+ -1,
152
+ )
153
+ x_out2 = x_out2.flatten(3)
154
+ return torch.cat((x_out2, x_pass), dim=-1)
155
+
156
+
157
+ class RMSNorm(torch.nn.Module):
158
+ def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
159
+ super().__init__()
160
+ self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
161
+ self.eps = eps
162
+
163
+ def forward(self, hidden_states: torch.Tensor):
164
+ input_dtype = hidden_states.dtype
165
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
166
+ hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
167
+
168
+ return (self.weight * hidden_states).to(input_dtype)
169
+
170
+
171
+ class CoreAttention(torch.nn.Module):
172
+ def __init__(self, config: ChatGLMConfig, layer_number):
173
+ super(CoreAttention, self).__init__()
174
+
175
+ self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
176
+ self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
177
+ if self.apply_query_key_layer_scaling:
178
+ self.attention_softmax_in_fp32 = True
179
+ self.layer_number = max(1, layer_number)
180
+
181
+ projection_size = config.kv_channels * config.num_attention_heads
182
+
183
+ # Per attention head and per partition values.
184
+ self.hidden_size_per_partition = projection_size
185
+ self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
186
+ self.num_attention_heads_per_partition = config.num_attention_heads
187
+
188
+ self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
189
+ self.attention_dropout = config.attention_dropout
190
+
191
+ def forward(self, query_layer, key_layer, value_layer, attention_mask):
192
+ seqlen_q, batch_size = query_layer.shape[0], query_layer.shape[1]
193
+ seqlen_k = key_layer.shape[0]
194
+ query_layer, key_layer, value_layer = [rearrange(x, 's b ... -> (b s) ...') for x in [query_layer, key_layer, value_layer]]
195
+ # DO flash_attn_varlen_func
196
+ if attention_mask is None or attention_mask.ndim != 1:
197
+ cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
198
+ device=query_layer.device)
199
+ else:
200
+ assert seqlen_q == seqlen_k
201
+ cu_seqlens_q = attention_mask
202
+ if self.training:
203
+ assert seqlen_k == seqlen_q
204
+ is_causal = True
205
+ cu_seqlens_k = cu_seqlens_q
206
+ else:
207
+ is_causal = seqlen_q == seqlen_k
208
+ cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
209
+ device=query_layer.device) if not is_causal else cu_seqlens_q
210
+ self.attention_dropout = 0
211
+ context_layer = flash_attn_unpadded_func(
212
+ query_layer, key_layer, value_layer, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
213
+ self.attention_dropout,
214
+ softmax_scale=1.0 / self.norm_factor, causal=is_causal
215
+ )
216
+ context_layer = rearrange(context_layer, '(b s) ... -> s b ...', b=batch_size)
217
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
218
+ context_layer = context_layer.reshape(*new_context_layer_shape)
219
+ return context_layer
220
+
221
+
222
+ class SelfAttention(torch.nn.Module):
223
+ """Parallel self-attention layer abstract class.
224
+
225
+ Self-attention layer takes input with size [s, b, h]
226
+ and returns output of the same size.
227
+ """
228
+
229
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
230
+ super(SelfAttention, self).__init__()
231
+ self.layer_number = max(1, layer_number)
232
+
233
+ self.projection_size = config.kv_channels * config.num_attention_heads
234
+
235
+ # Per attention head and per partition values.
236
+ self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
237
+ self.num_attention_heads_per_partition = config.num_attention_heads
238
+
239
+ self.multi_query_attention = config.multi_query_attention
240
+ self.qkv_hidden_size = 3 * self.projection_size
241
+ if self.multi_query_attention:
242
+ self.num_multi_query_groups_per_partition = config.multi_query_group_num
243
+ self.qkv_hidden_size = (
244
+ self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
245
+ )
246
+ self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
247
+ bias=config.add_bias_linear or config.add_qkv_bias,
248
+ device=device, **_config_to_kwargs(config)
249
+ )
250
+
251
+ self.core_attention = CoreAttention(config, self.layer_number)
252
+
253
+ # Output.
254
+ self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
255
+ device=device, **_config_to_kwargs(config)
256
+ )
257
+
258
+ def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
259
+ if self.multi_query_attention:
260
+ num_attention_heads = self.num_multi_query_groups_per_partition
261
+ else:
262
+ num_attention_heads = self.num_attention_heads_per_partition
263
+ return torch.empty(
264
+ inference_max_sequence_len,
265
+ batch_size,
266
+ num_attention_heads,
267
+ self.hidden_size_per_attention_head,
268
+ dtype=dtype,
269
+ device=device,
270
+ )
271
+
272
+ def forward(
273
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
274
+ ):
275
+ # hidden_states: [sq, b, h]
276
+
277
+ # =================================================
278
+ # Pre-allocate memory for key-values for inference.
279
+ # =================================================
280
+ # =====================
281
+ # Query, Key, and Value
282
+ # =====================
283
+
284
+ # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
285
+ mixed_x_layer = self.query_key_value(hidden_states)
286
+
287
+ if self.multi_query_attention:
288
+ (query_layer, key_layer, value_layer) = mixed_x_layer.split(
289
+ [
290
+ self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
291
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
292
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
293
+ ],
294
+ dim=-1,
295
+ )
296
+ query_layer = query_layer.view(
297
+ query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
298
+ )
299
+ key_layer = key_layer.view(
300
+ key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
301
+ )
302
+ value_layer = value_layer.view(
303
+ value_layer.size()[:-1]
304
+ + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
305
+ )
306
+ else:
307
+ new_tensor_shape = mixed_x_layer.size()[:-1] + \
308
+ (self.num_attention_heads_per_partition,
309
+ 3 * self.hidden_size_per_attention_head)
310
+ mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
311
+
312
+ # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
313
+ (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
314
+
315
+ # apply relative positional encoding (rotary embedding)
316
+ if rotary_pos_emb is not None:
317
+ query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
318
+ key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
319
+
320
+ # adjust key and value for inference
321
+ if use_cache:
322
+ if kv_cache is not None:
323
+ cache_k, cache_v = kv_cache
324
+ key_layer = torch.cat((cache_k, key_layer), dim=0)
325
+ value_layer = torch.cat((cache_v, value_layer), dim=0)
326
+ kv_cache = (key_layer, value_layer)
327
+ else:
328
+ kv_cache = None
329
+
330
+
331
+ if self.multi_query_attention:
332
+ key_layer = key_layer.unsqueeze(-2)
333
+ key_layer = key_layer.expand(
334
+ -1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
335
+ )
336
+ key_layer = key_layer.contiguous().view(
337
+ key_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
338
+ )
339
+ value_layer = value_layer.unsqueeze(-2)
340
+ value_layer = value_layer.expand(
341
+ -1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
342
+ )
343
+ value_layer = value_layer.contiguous().view(
344
+ value_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
345
+ )
346
+
347
+ # ==================================
348
+ # core attention computation
349
+ # ==================================
350
+
351
+ context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
352
+
353
+ # =================
354
+ # Output. [sq, b, h]
355
+ # =================
356
+
357
+ output = self.dense(context_layer)
358
+
359
+ return output, kv_cache
360
+
361
+
362
+ def _config_to_kwargs(args):
363
+ common_kwargs = {
364
+ "dtype": args.torch_dtype,
365
+ }
366
+ return common_kwargs
367
+
368
+
369
+ class MLP(torch.nn.Module):
370
+ """MLP.
371
+
372
+ MLP will take the input with h hidden state, project it to 4*h
373
+ hidden dimension, perform nonlinear transformation, and project the
374
+ state back into h hidden dimension.
375
+ """
376
+
377
+ def __init__(self, config: ChatGLMConfig, device=None):
378
+ super(MLP, self).__init__()
379
+
380
+ self.add_bias = config.add_bias_linear
381
+
382
+ # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
383
+ self.dense_h_to_4h = nn.Linear(
384
+ config.hidden_size,
385
+ config.ffn_hidden_size * 2,
386
+ bias=self.add_bias,
387
+ device=device,
388
+ **_config_to_kwargs(config)
389
+ )
390
+
391
+ def swiglu(x):
392
+ x = torch.chunk(x, 2, dim=-1)
393
+ return F.silu(x[0]) * x[1]
394
+
395
+ self.activation_func = swiglu
396
+
397
+ # Project back to h.
398
+ self.dense_4h_to_h = nn.Linear(
399
+ config.ffn_hidden_size,
400
+ config.hidden_size,
401
+ bias=self.add_bias,
402
+ device=device,
403
+ **_config_to_kwargs(config)
404
+ )
405
+
406
+ def forward(self, hidden_states):
407
+ # [s, b, 4hp]
408
+ intermediate_parallel = self.dense_h_to_4h(hidden_states)
409
+ intermediate_parallel = self.activation_func(intermediate_parallel)
410
+ # [s, b, h]
411
+ output = self.dense_4h_to_h(intermediate_parallel)
412
+ return output
413
+
414
+
415
+ class GLMBlock(torch.nn.Module):
416
+ """A single transformer layer.
417
+
418
+ Transformer layer takes input with size [s, b, h] and returns an
419
+ output of the same size.
420
+ """
421
+
422
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
423
+ super(GLMBlock, self).__init__()
424
+ self.layer_number = layer_number
425
+
426
+ self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
427
+
428
+ self.fp32_residual_connection = config.fp32_residual_connection
429
+
430
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
431
+ # Layernorm on the input data.
432
+ self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
433
+ dtype=config.torch_dtype)
434
+
435
+ # Self attention.
436
+ self.self_attention = SelfAttention(config, layer_number, device=device)
437
+ self.hidden_dropout = config.hidden_dropout
438
+
439
+ # Layernorm on the attention output
440
+ self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
441
+ dtype=config.torch_dtype)
442
+
443
+ # MLP
444
+ self.mlp = MLP(config, device=device)
445
+
446
+ def forward(
447
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
448
+ ):
449
+ # hidden_states: [s, b, h]
450
+
451
+ # Layer norm at the beginning of the transformer layer.
452
+ layernorm_output = self.input_layernorm(hidden_states)
453
+ # Self attention.
454
+ attention_output, kv_cache = self.self_attention(
455
+ layernorm_output,
456
+ attention_mask,
457
+ rotary_pos_emb,
458
+ kv_cache=kv_cache,
459
+ use_cache=use_cache
460
+ )
461
+
462
+ # Residual connection.
463
+ if self.apply_residual_connection_post_layernorm:
464
+ residual = layernorm_output
465
+ else:
466
+ residual = hidden_states
467
+
468
+ layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
469
+ layernorm_input = residual + layernorm_input
470
+
471
+ # Layer norm post the self attention.
472
+ layernorm_output = self.post_attention_layernorm(layernorm_input)
473
+
474
+ # MLP.
475
+ mlp_output = self.mlp(layernorm_output)
476
+
477
+ # Second residual connection.
478
+ if self.apply_residual_connection_post_layernorm:
479
+ residual = layernorm_output
480
+ else:
481
+ residual = layernorm_input
482
+
483
+ output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
484
+ output = residual + output
485
+
486
+ return output, kv_cache
487
+
488
+
489
+ class GLMTransformer(torch.nn.Module):
490
+ """Transformer class."""
491
+
492
+ def __init__(self, config: ChatGLMConfig, device=None):
493
+ super(GLMTransformer, self).__init__()
494
+
495
+ self.fp32_residual_connection = config.fp32_residual_connection
496
+ self.post_layer_norm = config.post_layer_norm
497
+
498
+ # Number of layers.
499
+ self.num_layers = config.num_layers
500
+
501
+ # Transformer layers.
502
+ def build_layer(layer_number):
503
+ return GLMBlock(config, layer_number, device=device)
504
+
505
+ self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
506
+
507
+ if self.post_layer_norm:
508
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
509
+ # Final layer norm before output.
510
+ self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
511
+ dtype=config.torch_dtype)
512
+
513
+ self.gradient_checkpointing = False
514
+
515
+ def _get_layer(self, layer_number):
516
+ return self.layers[layer_number]
517
+
518
+ def forward(
519
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
520
+ use_cache: Optional[bool] = True,
521
+ output_hidden_states: Optional[bool] = False,
522
+ ):
523
+ if not kv_caches:
524
+ kv_caches = [None for _ in range(self.num_layers)]
525
+ presents = () if use_cache else None
526
+ if self.gradient_checkpointing and self.training:
527
+ if use_cache:
528
+ # logger.warning_once(
529
+ # "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
530
+ # )
531
+ use_cache = False
532
+
533
+ all_self_attentions = None
534
+ all_hidden_states = () if output_hidden_states else None
535
+ for index in range(self.num_layers):
536
+ if output_hidden_states:
537
+ all_hidden_states = all_hidden_states + (hidden_states,)
538
+
539
+ layer = self._get_layer(index)
540
+ if self.gradient_checkpointing and self.training:
541
+ layer_ret = torch.utils.checkpoint.checkpoint(
542
+ layer,
543
+ hidden_states,
544
+ attention_mask,
545
+ rotary_pos_emb,
546
+ kv_caches[index],
547
+ use_cache,
548
+ use_reentrant=False
549
+ )
550
+ else:
551
+ layer_ret = layer(
552
+ hidden_states,
553
+ attention_mask,
554
+ rotary_pos_emb,
555
+ kv_cache=kv_caches[index],
556
+ use_cache=use_cache
557
+ )
558
+ hidden_states, kv_cache = layer_ret
559
+ if use_cache:
560
+ presents = presents + (kv_cache,)
561
+
562
+ if output_hidden_states:
563
+ all_hidden_states = all_hidden_states + (hidden_states,)
564
+
565
+ # Final layer norm.
566
+ if self.post_layer_norm:
567
+ hidden_states = self.final_layernorm(hidden_states)
568
+
569
+ return hidden_states, presents, all_hidden_states, all_self_attentions
570
+
571
+
572
+ class ChatGLMPreTrainedModel(PreTrainedModel):
573
+ """
574
+ An abstract class to handle weights initialization and
575
+ a simple interface for downloading and loading pretrained models.
576
+ """
577
+
578
+ is_parallelizable = False
579
+ supports_gradient_checkpointing = True
580
+ config_class = ChatGLMConfig
581
+ base_model_prefix = "transformer"
582
+ _no_split_modules = ["GLMBlock"]
583
+
584
+ def _init_weights(self, module: nn.Module):
585
+ """Initialize the weights."""
586
+ return
587
+
588
+ def get_masks(self, input_ids, past_key_values, padding_mask=None):
589
+ batch_size, seq_length = input_ids.shape
590
+ full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
591
+ full_attention_mask.tril_()
592
+ past_length = 0
593
+ if past_key_values:
594
+ past_length = past_key_values[0][0].shape[0]
595
+ if past_length:
596
+ full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
597
+ device=input_ids.device), full_attention_mask), dim=-1)
598
+ if padding_mask is not None:
599
+ full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
600
+ if not past_length and padding_mask is not None:
601
+ full_attention_mask -= padding_mask.unsqueeze(-1) - 1
602
+ full_attention_mask = (full_attention_mask < 0.5).bool()
603
+ full_attention_mask.unsqueeze_(1)
604
+ return full_attention_mask
605
+
606
+ def get_position_ids(self, input_ids, device):
607
+ batch_size, seq_length = input_ids.shape
608
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
609
+ return position_ids
610
+
611
+ def _set_gradient_checkpointing(self, module, value=False):
612
+ if isinstance(module, GLMTransformer):
613
+ module.gradient_checkpointing = value
614
+
615
+
616
+ class Embedding(torch.nn.Module):
617
+ """Language model embeddings."""
618
+
619
+ def __init__(self, config: ChatGLMConfig, device=None):
620
+ super(Embedding, self).__init__()
621
+
622
+ self.hidden_size = config.hidden_size
623
+ # Word embeddings (parallel).
624
+ self.word_embeddings = nn.Embedding(
625
+ config.padded_vocab_size,
626
+ self.hidden_size,
627
+ dtype=config.torch_dtype,
628
+ device=device
629
+ )
630
+ self.fp32_residual_connection = config.fp32_residual_connection
631
+
632
+ def forward(self, input_ids):
633
+ # Embeddings.
634
+ words_embeddings = self.word_embeddings(input_ids)
635
+ embeddings = words_embeddings
636
+ # Data format change to avoid explicit tranposes : [b s h] --> [s b h].
637
+ embeddings = embeddings.transpose(0, 1).contiguous()
638
+ # If the input flag for fp32 residual connection is set, convert for float.
639
+ if self.fp32_residual_connection:
640
+ embeddings = embeddings.float()
641
+ return embeddings
642
+
643
+
644
+ class ChatGLMModel(ChatGLMPreTrainedModel):
645
+ def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
646
+ super().__init__(config)
647
+ if empty_init:
648
+ init_method = skip_init
649
+ else:
650
+ init_method = default_init
651
+ init_kwargs = {}
652
+ if device is not None:
653
+ init_kwargs["device"] = device
654
+ self.embedding = init_method(Embedding, config, **init_kwargs)
655
+
656
+ # Rotary positional embeddings
657
+ self.seq_length = config.seq_length
658
+ rotary_dim = (
659
+ config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
660
+ )
661
+
662
+ self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, rope_ratio=config.rope_ratio, original_impl=config.original_rope,
663
+ device=device, dtype=config.torch_dtype)
664
+ self.encoder = init_method(GLMTransformer, config, **init_kwargs)
665
+ self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
666
+ dtype=config.torch_dtype, **init_kwargs)
667
+
668
+ def get_input_embeddings(self):
669
+ return self.embedding.word_embeddings
670
+
671
+ def forward(
672
+ self,
673
+ input_ids,
674
+ position_ids: Optional[torch.Tensor] = None,
675
+ attention_mask: Optional[torch.BoolTensor] = None,
676
+ full_attention_mask: Optional[torch.BoolTensor] = None,
677
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
678
+ inputs_embeds: Optional[torch.Tensor] = None,
679
+ use_cache: Optional[bool] = None,
680
+ output_hidden_states: Optional[bool] = None,
681
+ return_dict: Optional[bool] = None,
682
+ ):
683
+ output_hidden_states = (
684
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
685
+ )
686
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
687
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
688
+
689
+ batch_size, seq_length = input_ids.shape
690
+
691
+ if inputs_embeds is None:
692
+ inputs_embeds = self.embedding(input_ids)
693
+
694
+ # if full_attention_mask is None:
695
+ # if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
696
+ # full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
697
+
698
+ # Rotary positional embeddings
699
+ rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
700
+ if position_ids is not None:
701
+ rotary_pos_emb = rotary_pos_emb[position_ids]
702
+ else:
703
+ rotary_pos_emb = rotary_pos_emb[None, :seq_length]
704
+ rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
705
+
706
+ # Run encoder.
707
+ hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
708
+ inputs_embeds, attention_mask, rotary_pos_emb=rotary_pos_emb,
709
+ kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
710
+ )
711
+
712
+ if not return_dict:
713
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
714
+
715
+ return BaseModelOutputWithPast(
716
+ last_hidden_state=hidden_states,
717
+ past_key_values=presents,
718
+ hidden_states=all_hidden_states,
719
+ attentions=all_self_attentions,
720
+ )
721
+
722
+
723
+ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
724
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
725
+ super().__init__(config)
726
+
727
+ self.max_sequence_length = config.max_length
728
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
729
+ self.config = config
730
+ self.pack_loss = False
731
+
732
+ def _update_model_kwargs_for_generation(
733
+ self,
734
+ outputs: ModelOutput,
735
+ model_kwargs: Dict[str, Any],
736
+ is_encoder_decoder: bool = False,
737
+ standardize_cache_format: bool = False,
738
+ ) -> Dict[str, Any]:
739
+ # update past_key_values
740
+ model_kwargs["past_key_values"] = self._extract_past_from_model_output(
741
+ outputs, standardize_cache_format=standardize_cache_format
742
+ )
743
+
744
+ # update attention mask
745
+ if "attention_mask" in model_kwargs:
746
+ attention_mask = model_kwargs["attention_mask"]
747
+ model_kwargs["attention_mask"] = torch.cat(
748
+ [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
749
+ )
750
+
751
+ # update position ids
752
+ if "position_ids" in model_kwargs:
753
+ position_ids = model_kwargs["position_ids"]
754
+ new_position_id = position_ids[..., -1:].clone()
755
+ new_position_id += 1
756
+ model_kwargs["position_ids"] = torch.cat(
757
+ [position_ids, new_position_id], dim=-1
758
+ )
759
+
760
+ model_kwargs["is_first_forward"] = False
761
+ return model_kwargs
762
+
763
+ def prepare_inputs_for_generation(
764
+ self,
765
+ input_ids: torch.LongTensor,
766
+ past_key_values: Optional[torch.Tensor] = None,
767
+ attention_mask: Optional[torch.Tensor] = None,
768
+ position_ids: Optional[torch.Tensor] = None,
769
+ is_first_forward: bool = True,
770
+ **kwargs
771
+ ) -> dict:
772
+ # only last token for input_ids if past is not None
773
+ if position_ids is None:
774
+ position_ids = self.get_position_ids(input_ids, device=input_ids.device)
775
+ if not is_first_forward:
776
+ position_ids = position_ids[..., -1:]
777
+ input_ids = input_ids[:, -1:]
778
+ return {
779
+ "input_ids": input_ids,
780
+ "past_key_values": past_key_values,
781
+ "position_ids": position_ids,
782
+ "attention_mask": attention_mask,
783
+ "return_last_logit": True
784
+ }
785
+
786
+ def forward(
787
+ self,
788
+ input_ids: Optional[torch.Tensor] = None,
789
+ position_ids: Optional[torch.Tensor] = None,
790
+ attention_mask: Optional[torch.Tensor] = None,
791
+ past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
792
+ inputs_embeds: Optional[torch.Tensor] = None,
793
+ labels: Optional[Tuple[torch.Tensor]] = None,
794
+ use_cache: Optional[bool] = None,
795
+ output_attentions: Optional[bool] = None,
796
+ output_hidden_states: Optional[bool] = None,
797
+ return_dict: Optional[bool] = None,
798
+ return_last_logit: Optional[bool] = False,
799
+ ):
800
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
801
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
802
+
803
+ transformer_outputs = self.transformer(
804
+ input_ids=input_ids,
805
+ position_ids=position_ids,
806
+ attention_mask=attention_mask,
807
+ past_key_values=past_key_values,
808
+ inputs_embeds=inputs_embeds,
809
+ use_cache=use_cache,
810
+ output_hidden_states=output_hidden_states,
811
+ return_dict=return_dict,
812
+ )
813
+
814
+ hidden_states = transformer_outputs[0]
815
+ if return_last_logit:
816
+ hidden_states = hidden_states[-1:]
817
+ lm_logits = self.transformer.output_layer(hidden_states)
818
+ lm_logits = lm_logits.transpose(0, 1).contiguous()
819
+
820
+ loss = None
821
+ if labels is not None:
822
+ lm_logits = lm_logits.to(torch.float32)
823
+ # Shift so that tokens < n predict n
824
+ shift_logits = lm_logits[..., :-1, :].contiguous()
825
+ if isinstance(labels, tuple) or isinstance(labels, list):
826
+ labels, weights = labels
827
+ shift_labels = labels[..., 1:].contiguous()
828
+ if self.pack_loss:
829
+ loss_fct = CrossEntropyLoss(ignore_index=-100)#, reduction='none')
830
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
831
+ loss *= weights
832
+ # if self.pack_loss:
833
+ # shift_weights = weights[..., 1:].contiguous()
834
+ # loss_fct = CrossEntropyLoss(ignore_index=-100, reduction='none')
835
+ # loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
836
+ # loss = (loss * shift_weights).sum()
837
+ else:
838
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
839
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
840
+
841
+ lm_logits = lm_logits.to(hidden_states.dtype)
842
+ loss = loss.to(hidden_states.dtype)
843
+
844
+ if not return_dict:
845
+ output = (lm_logits,) + transformer_outputs[1:]
846
+ return ((loss,) + output) if loss is not None else output
847
+
848
+ return CausalLMOutputWithPast(
849
+ loss=loss,
850
+ logits=lm_logits,
851
+ past_key_values=transformer_outputs.past_key_values,
852
+ hidden_states=transformer_outputs.hidden_states,
853
+ attentions=transformer_outputs.attentions,
854
+ )
855
+
856
+ @staticmethod
857
+ def _reorder_cache(
858
+ past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
859
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
860
+ """
861
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
862
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
863
+ beam_idx at every generation step.
864
+
865
+ Output shares the same memory storage as `past`.
866
+ """
867
+ return tuple(
868
+ (
869
+ layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
870
+ layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
871
+ )
872
+ for layer_past in past
873
+ )
874
+
875
+ def process_response(self, response):
876
+ response = response.strip()
877
+ response = response.replace("[[训练时间]]", "2023年")
878
+ return response
879
+
880
+ @torch.inference_mode()
881
+ def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
882
+ max_length: int = 8192, num_beams=1, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
883
+ **kwargs):
884
+ if history is None:
885
+ history = []
886
+ if logits_processor is None:
887
+ logits_processor = LogitsProcessorList()
888
+ logits_processor.append(InvalidScoreLogitsProcessor())
889
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
890
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
891
+ inputs = tokenizer.build_chat_input(query, history=history, role=role)
892
+ inputs = inputs.to(self.device)
893
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
894
+ tokenizer.get_command("<|observation|>")]
895
+ outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
896
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
897
+ response = tokenizer.decode(outputs)
898
+ history.append({"role": role, "content": query})
899
+ response = self.process_response(response)
900
+ return response, history
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "eos_token": "<|endoftext|>"
3
+ }
tokenization_chatglm.py ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import regex as re
2
+ import base64
3
+ import os
4
+ import json
5
+ import tiktoken
6
+ from transformers import PreTrainedTokenizer
7
+ from typing import List, Optional, Union, Dict
8
+ from transformers import PreTrainedTokenizer
9
+ from transformers.utils import logging, PaddingStrategy
10
+ from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
11
+
12
+
13
+ class ChatGLM4Tokenizer(PreTrainedTokenizer):
14
+ vocab_files_names = {"vocab_file": "tokenizer.model"}
15
+ model_input_names = ["input_ids", "attention_mask", "position_ids"]
16
+
17
+ def __init__(
18
+ self,
19
+ vocab_file,
20
+ padding_side="left",
21
+ clean_up_tokenization_spaces=False,
22
+ encode_special_tokens=False,
23
+ **kwargs
24
+ ):
25
+ self.name = "GLMTokenizer"
26
+ self.vocab_file = vocab_file
27
+ pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
28
+ self.pat_str = re.compile(pat_str)
29
+ self.encode_special_tokens = encode_special_tokens
30
+
31
+ mergeable_ranks = {}
32
+ with open(vocab_file) as f:
33
+ for line in f:
34
+ token, rank = line.strip().split()
35
+ rank = int(rank)
36
+ token = base64.b64decode(token)
37
+ mergeable_ranks[token] = rank
38
+
39
+ self.mergeable_ranks = mergeable_ranks
40
+ self.special_tokens = ["<|endoftext|>", "[MASK]", "[gMASK]", "[sMASK]", "<sop>", "<eop>", "<|system|>",
41
+ "<|user|>", "<|assistant|>", "<|observation|>", "<|begin_of_image|>", "<|end_of_image|>",
42
+ "<|begin_of_video|>", "<|end_of_video|>"]
43
+
44
+ self.special_tokens = {
45
+ token: idx for idx, token in enumerate(self.special_tokens, start=len(mergeable_ranks))
46
+ }
47
+ self.special_token_ids = {idx: token for token, idx in self.special_tokens.items()}
48
+
49
+ self.tokenizer = tiktoken.Encoding(
50
+ name="my_tokenizer",
51
+ pat_str=pat_str,
52
+ mergeable_ranks=mergeable_ranks,
53
+ special_tokens=self.special_tokens
54
+ )
55
+ self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
56
+ self.n_words = len(self.decoder) + len(self.special_tokens)
57
+
58
+ super().__init__(
59
+ padding_side=padding_side,
60
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
61
+ **kwargs
62
+ )
63
+
64
+ def get_command(self, token):
65
+ assert token in self.special_tokens
66
+ return self.special_tokens[token]
67
+
68
+ @property
69
+ def vocab_size(self):
70
+ return self.n_words
71
+
72
+ @property
73
+ def eos_token_id(self):
74
+ return self.get_command("<|endoftext|>")
75
+
76
+ def get_vocab(self):
77
+ """ Returns vocab as a dict """
78
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
79
+ vocab.update(self.added_tokens_encoder)
80
+ return vocab
81
+
82
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
83
+ """
84
+ Converts a sequence of tokens in a single string.
85
+ """
86
+ text = ""
87
+ temp = b""
88
+ for t in tokens:
89
+ if isinstance(t, str):
90
+ if temp:
91
+ text += temp.decode("utf-8", errors="replace")
92
+ temp = b""
93
+ text += t
94
+ elif isinstance(t, bytes):
95
+ temp += t
96
+ else:
97
+ raise TypeError("token should only be of type types or str")
98
+ if temp:
99
+ text += temp.decode("utf-8", errors="replace")
100
+ return text
101
+
102
+ def _tokenize(self, text, **kwargs):
103
+ tokens = []
104
+ if self.encode_special_tokens:
105
+ ids = self.tokenizer.encode(text, allowed_special="all")
106
+ else:
107
+ ids = self.tokenizer.encode(text, disallowed_special=())
108
+ for t in ids:
109
+ tokens.append(self.decoder[t])
110
+ return tokens
111
+
112
+ def _convert_token_to_id(self, token):
113
+ """ Converts a token (str) in an id using the vocab. """
114
+ if token in self.special_tokens:
115
+ return self.special_tokens[token]
116
+ return self.mergeable_ranks[token]
117
+
118
+ def _convert_id_to_token(self, index):
119
+ """Converts an index (integer) in a token (str) using the vocab."""
120
+ if index in self.special_token_ids:
121
+ return self.special_token_ids[index]
122
+ return self.decoder[index]
123
+
124
+ def save_vocabulary(self, save_directory, filename_prefix=None):
125
+ """
126
+ Save the vocabulary and special tokens file to a directory.
127
+
128
+ Args:
129
+ save_directory (`str`):
130
+ The directory in which to save the vocabulary.
131
+ filename_prefix (`str`, *optional*):
132
+ An optional prefix to add to the named of the saved files.
133
+
134
+ Returns:
135
+ `Tuple(str)`: Paths to the files saved.
136
+ """
137
+ if os.path.isdir(save_directory):
138
+ vocab_file = os.path.join(
139
+ save_directory, self.vocab_files_names["vocab_file"]
140
+ )
141
+ else:
142
+ vocab_file = save_directory
143
+
144
+ with open(self.vocab_file, 'rb') as fin:
145
+ proto_str = fin.read()
146
+
147
+ with open(vocab_file, "wb") as writer:
148
+ writer.write(proto_str)
149
+
150
+ return (vocab_file,)
151
+
152
+ def get_prefix_tokens(self):
153
+ prefix_tokens = [self.get_command("[gMASK]"), self.get_command("<sop>")]
154
+ return prefix_tokens
155
+
156
+ def build_single_message(self, role, metadata, message):
157
+ assert role in ["system", "user", "assistant", "observation"], role
158
+ role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
159
+ message_tokens = self.tokenizer.encode(message, disallowed_special=())
160
+ tokens = role_tokens + message_tokens
161
+ return tokens
162
+
163
+ def build_chat_input(self, query, history=None, role="user"):
164
+ if history is None:
165
+ history = []
166
+ input_ids = []
167
+ for item in history:
168
+ content = item["content"]
169
+ if item["role"] == "system" and "tools" in item:
170
+ for function in item["tools"]:
171
+ content += f"\n\n## {function['name']}\n\n{json.dumps(function, ensure_ascii=False, indent=4)}"
172
+ content += "\n在调用上述函数时,请使用 Json 格式表示调用的参数。"
173
+ input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
174
+ input_ids.extend(self.build_single_message(role, "", query))
175
+ input_ids.extend([self.get_command("<|assistant|>")])
176
+ return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
177
+
178
+ def build_inputs_with_special_tokens(
179
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
180
+ ) -> List[int]:
181
+ """
182
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
183
+ adding special tokens. A BERT sequence has the following format:
184
+
185
+ - single sequence: `[CLS] X [SEP]`
186
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
187
+
188
+ Args:
189
+ token_ids_0 (`List[int]`):
190
+ List of IDs to which the special tokens will be added.
191
+ token_ids_1 (`List[int]`, *optional*):
192
+ Optional second list of IDs for sequence pairs.
193
+
194
+ Returns:
195
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
196
+ """
197
+ prefix_tokens = self.get_prefix_tokens()
198
+ token_ids_0 = prefix_tokens + token_ids_0
199
+ if token_ids_1 is not None:
200
+ token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
201
+ return token_ids_0
202
+
203
+ def _pad(
204
+ self,
205
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
206
+ max_length: Optional[int] = None,
207
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
208
+ pad_to_multiple_of: Optional[int] = None,
209
+ return_attention_mask: Optional[bool] = None,
210
+ ) -> dict:
211
+ """
212
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
213
+
214
+ Args:
215
+ encoded_inputs:
216
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
217
+ max_length: maximum length of the returned list and optionally padding length (see below).
218
+ Will truncate by taking into account the special tokens.
219
+ padding_strategy: PaddingStrategy to use for padding.
220
+
221
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
222
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
223
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
224
+ The tokenizer padding sides are defined in self.padding_side:
225
+
226
+ - 'left': pads on the left of the sequences
227
+ - 'right': pads on the right of the sequences
228
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
229
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
230
+ `>= 7.5` (Volta).
231
+ return_attention_mask:
232
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
233
+ """
234
+ # Load from model defaults
235
+ assert self.padding_side == "left"
236
+
237
+ required_input = encoded_inputs[self.model_input_names[0]]
238
+ seq_length = len(required_input)
239
+
240
+ if padding_strategy == PaddingStrategy.LONGEST:
241
+ max_length = len(required_input)
242
+
243
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
244
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
245
+
246
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
247
+
248
+ # Initialize attention mask if not present.
249
+ if "attention_mask" not in encoded_inputs:
250
+ encoded_inputs["attention_mask"] = [1] * seq_length
251
+
252
+ if "position_ids" not in encoded_inputs:
253
+ encoded_inputs["position_ids"] = list(range(seq_length))
254
+
255
+ if needs_to_be_padded:
256
+ difference = max_length - len(required_input)
257
+
258
+ if "attention_mask" in encoded_inputs:
259
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
260
+ if "position_ids" in encoded_inputs:
261
+ encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
262
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
263
+
264
+ return encoded_inputs
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a493598071550244b2ee7f26118f3edec2150b9dfa967929a99052ac83fe716
3
+ size 2623634
tokenizer_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "151329": {
4
+ "content": "<|endoftext|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ }
11
+ },
12
+ "auto_map": {
13
+ "AutoTokenizer": [
14
+ "tokenization_chatglm.ChatGLM4Tokenizer",
15
+ null
16
+ ]
17
+ },
18
+ "chat_template": "{% for message in messages %}{% if loop.first %}[gMASK]sop<|{{ message['role'] }}|>\n {{ message['content'] }}{% else %}<|{{ message['role'] }}|>\n {{ message['content'] }}{% endif %}{% endfor %}{% if add_generation_prompt %}<|assistant|>{% endif %}",
19
+ "clean_up_tokenization_spaces": false,
20
+ "do_lower_case": false,
21
+ "eos_token": "<|endoftext|>",
22
+ "model_max_length": 1000000000000000019884624838656,
23
+ "padding_side": "left",
24
+ "remove_space": false,
25
+ "tokenizer_class": "ChatGLM4Tokenizer"
26
+ }