Merge branch 'main' of https://huggingface.co/THUDM/chatglm3-6b-base
Browse files
README.md
CHANGED
@@ -19,7 +19,7 @@ tags:
|
|
19 |
📍Experience the larger-scale ChatGLM model at <a href="https://www.chatglm.cn">chatglm.cn</a>
|
20 |
</p>
|
21 |
|
22 |
-
## 介绍
|
23 |
ChatGLM3-6B 是 ChatGLM 系列最新一代的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性:
|
24 |
|
25 |
1. **更强大的基础模型:** ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,ChatGLM3-6B-Base 具有在 10B 以下的预训练模型中最强的性能。
|
@@ -28,16 +28,26 @@ ChatGLM3-6B 是 ChatGLM 系列最新一代的开源模型,在保留了前两
|
|
28 |
|
29 |
本仓库为 ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base。
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
```shell
|
34 |
pip install protobuf transformers==4.30.2 cpm_kernels torch>=2.0 gradio mdtex2html sentencepiece accelerate
|
35 |
```
|
36 |
|
37 |
-
## 代码调用
|
38 |
|
39 |
作为没有经过人类意图对齐的模型,ChatGLM3-6B-Base 不能用于多轮对话。但是可以进行文本续写。
|
40 |
|
|
|
|
|
41 |
```python
|
42 |
from transformers import AutoTokenizer, AutoModel
|
43 |
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b-base", trust_remote_code=True)
|
@@ -53,14 +63,18 @@ print(tokenizer.decode(outputs[0].tolist()))
|
|
53 |
For more instructions, including how to run CLI and web demos, and model quantization, please refer to our [Github Repo](https://github.com/THUDM/ChatGLM).
|
54 |
|
55 |
|
56 |
-
## 协议
|
57 |
|
58 |
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源,ChatGLM3-6B 模型的权重的使用则需要遵循 [Model License](MODEL_LICENSE)。
|
59 |
|
60 |
-
|
|
|
|
|
61 |
|
62 |
如果你觉得我们的工作有帮助的话,请考虑引用下列论文。
|
63 |
|
|
|
|
|
64 |
```
|
65 |
@article{zeng2022glm,
|
66 |
title={Glm-130b: An open bilingual pre-trained model},
|
|
|
19 |
📍Experience the larger-scale ChatGLM model at <a href="https://www.chatglm.cn">chatglm.cn</a>
|
20 |
</p>
|
21 |
|
22 |
+
## 介绍 (Introduction)
|
23 |
ChatGLM3-6B 是 ChatGLM 系列最新一代的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性:
|
24 |
|
25 |
1. **更强大的基础模型:** ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,ChatGLM3-6B-Base 具有在 10B 以下的预训练模型中最强的性能。
|
|
|
28 |
|
29 |
本仓库为 ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base。
|
30 |
|
31 |
+
ChatGLM3-6B is the latest open-source model in the ChatGLM series. While retaining many excellent features such as smooth dialogue and low deployment threshold from the previous two generations, ChatGLM3-6B introduces the following features:
|
32 |
+
|
33 |
+
1. **More Powerful Base Model:** The base model of ChatGLM3-6B, ChatGLM3-6B-Base, employs a more diverse training dataset, more sufficient training steps, and a more reasonable training strategy. Evaluations on datasets such as semantics, mathematics, reasoning, code, knowledge, etc., show that ChatGLM3-6B-Base has the strongest performance among pre-trained models under 10B.
|
34 |
+
2. **More Comprehensive Function Support:** ChatGLM3-6B adopts a newly designed [Prompt format](https://github.com/THUDM/ChatGLM3/blob/main/PROMPT_en.md), in addition to the normal multi-turn dialogue. It also natively supports [function call](https://github.com/THUDM/ChatGLM3/blob/main/tool_using/README_en.md), code interpreter, and complex scenarios such as agent tasks.
|
35 |
+
3. **More Comprehensive Open-source Series:** In addition to the dialogue model ChatGLM3-6B, the base model ChatGLM-6B-Base and the long-text dialogue model ChatGLM3-6B-32K are also open-sourced. All the weights are **fully open** for academic research, and after completing the [questionnaire](https://open.bigmodel.cn/mla/form) registration, they are also **allowed for free commercial use**.
|
36 |
+
|
37 |
+
This repo is ChatGLM3-6B-Base, the base model of ChatGLM3-6B.
|
38 |
+
|
39 |
+
## 软件依赖 (Dependencies)
|
40 |
|
41 |
```shell
|
42 |
pip install protobuf transformers==4.30.2 cpm_kernels torch>=2.0 gradio mdtex2html sentencepiece accelerate
|
43 |
```
|
44 |
|
45 |
+
## 代码调用 (Code Usage)
|
46 |
|
47 |
作为没有经过人类意图对齐的模型,ChatGLM3-6B-Base 不能用于多轮对话。但是可以进行文本续写。
|
48 |
|
49 |
+
As a model that has not been aligned with human intent, ChatGLM3-6B-Base cannot be used for multi-turn conversations. However, text completion is possible.
|
50 |
+
|
51 |
```python
|
52 |
from transformers import AutoTokenizer, AutoModel
|
53 |
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b-base", trust_remote_code=True)
|
|
|
63 |
For more instructions, including how to run CLI and web demos, and model quantization, please refer to our [Github Repo](https://github.com/THUDM/ChatGLM).
|
64 |
|
65 |
|
66 |
+
## 协议 (License)
|
67 |
|
68 |
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源,ChatGLM3-6B 模型的权重的使用则需要遵循 [Model License](MODEL_LICENSE)。
|
69 |
|
70 |
+
The code in this repository is open-sourced under the [Apache-2.0 license](LICENSE), while the use of the ChatGLM3-6B model weights needs to comply with the [Model License](MODEL_LICENSE).
|
71 |
+
|
72 |
+
## 引用 (Citation)
|
73 |
|
74 |
如果你觉得我们的工作有帮助的话,请考虑引用下列论文。
|
75 |
|
76 |
+
If you find our work helpful, please consider citing the following papers.
|
77 |
+
|
78 |
```
|
79 |
@article{zeng2022glm,
|
80 |
title={Glm-130b: An open bilingual pre-trained model},
|