File size: 7,037 Bytes
ff4a7b3 a2c2a1e ff4a7b3 a2c2a1e 4a38ba2 ded72e6 4a38ba2 ded72e6 4a38ba2 c545ed3 4a38ba2 a2c2a1e c545ed3 4a38ba2 952cd27 4a38ba2 a2c2a1e 4a38ba2 a2c2a1e 4a38ba2 a2c2a1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
---
license: apache-2.0
language:
- en
---
# CogAgent
**CogAgent** is an open-source visual language model improved based on **CogVLM**.
π Paper: https://arxiv.org/abs/2312.08914
π GitHub: For more information such as demo, fine-tuning, and query prompts, please refer to [Our GitHub](https://github.com/THUDM/CogVLM/)
## Reminder
π **This is the ``cogagent-vqa`` version of CogAgent checkpoint.**
We have open-sourced 2 versions of CogAgent checkpoints, and you can choose one based on your needs.
1. ``cogagent-chat``: [This model](https://huggingface.co/THUDM/cogagent-chat-hf) has strong capabilities in **GUI Agent, visual multi-turn dialogue, visual grounding,** etc.
If you need GUI Agent and Visual Grounding functions, or need to conduct multi-turn dialogues with a given image, we recommend using this version of the model.
3. ``cogagent-vqa``: [This model](https://huggingface.co/THUDM/cogagent-vqa-hf) has *stronger* capabilities in **single-turn visual dialogue**.
If you need to **work on VQA benchmarks** (such as MMVET, VQAv2), we recommend using this model.
## Introduction
CogAgent-18B has 11 billion visual and 7 billion language parameters.
CogAgent demonstrates **strong performance** in image understanding and GUI agent:
1. CogAgent-18B **achieves state-of-the-art generalist performance on 9 cross-modal benchmarks**, including: VQAv2, MM-Vet, POPE, ST-VQA, OK-VQA, TextVQA, ChartQA, InfoVQA, DocVQA.
2. CogAgent-18B significantly **surpasses existing models on GUI operation datasets**, including AITW and Mind2Web.
In addition to all the **features** already present in **CogVLM** (visual multi-round dialogue, visual grounding), **CogAgent**:
1. Supports higher resolution visual input and dialogue question-answering. It supports ultra-high-resolution image inputs of **1120x1120**.
2. Possesses the capabilities of a visual Agent, being able to return a plan, next action, and specific operations with coordinates for any given task on any GUI screenshot.
3. Enhanced GUI-related question-answering capabilities, allowing it to handle questions about any GUI screenshot, such as web pages, PC apps, mobile applications, etc.
4. Enhanced capabilities in OCR-related tasks through improved pre-training and fine-tuning.
<div align="center">
<img src="https://raw.githubusercontent.com/THUDM/CogVLM/master/assets/cogagent_function.jpg" alt="img" style="zoom: 50%;" />
</div>
## Quick Start
use this python code to get started quickly in `cli_demo.py`:
```python
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, LlamaTokenizer
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--quant", choices=[4], type=int, default=None, help='quantization bits')
parser.add_argument("--from_pretrained", type=str, default="THUDM/cogagent-chat-hf", help='pretrained ckpt')
parser.add_argument("--local_tokenizer", type=str, default="lmsys/vicuna-7b-v1.5", help='tokenizer path')
parser.add_argument("--fp16", action="store_true")
parser.add_argument("--bf16", action="store_true")
args = parser.parse_args()
MODEL_PATH = args.from_pretrained
TOKENIZER_PATH = args.local_tokenizer
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = LlamaTokenizer.from_pretrained(TOKENIZER_PATH)
if args.bf16:
torch_type = torch.bfloat16
else:
torch_type = torch.float16
print("========Use torch type as:{} with device:{}========\n\n".format(torch_type, DEVICE))
if args.quant:
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=torch_type,
low_cpu_mem_usage=True,
load_in_4bit=True,
trust_remote_code=True
).eval()
else:
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=torch_type,
low_cpu_mem_usage=True,
load_in_4bit=args.quant is not None,
trust_remote_code=True
).to(DEVICE).eval()
while True:
image_path = input("image path >>>>> ")
if image_path == "stop":
break
image = Image.open(image_path).convert('RGB')
history = []
while True:
query = input("Human:")
if query == "clear":
break
input_by_model = model.build_conversation_input_ids(tokenizer, query=query, history=history, images=[image])
inputs = {
'input_ids': input_by_model['input_ids'].unsqueeze(0).to(DEVICE),
'token_type_ids': input_by_model['token_type_ids'].unsqueeze(0).to(DEVICE),
'attention_mask': input_by_model['attention_mask'].unsqueeze(0).to(DEVICE),
'images': [[input_by_model['images'][0].to(DEVICE).to(torch_type)]],
}
if 'cross_images' in input_by_model and input_by_model['cross_images']:
inputs['cross_images'] = [[input_by_model['cross_images'][0].to(DEVICE).to(torch_type)]]
# add any transformers params here.
gen_kwargs = {"max_length": 2048,
"temperature": 0.9,
"do_sample": False}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
response = tokenizer.decode(outputs[0])
response = response.split("</s>")[0]
print("\nCog:", response)
history.append((query, response))
```
Then run:
```bash
python cli_demo_hf.py --bf16
```
## License
The code in this repository is open source under the [Apache-2.0 license](./LICENSE), while the use of CogAgent and CogVLM model weights must comply with the [Model License](./MODEL_LICENSE).
## Citation & Acknowledgements
If you find our work helpful, please consider citing the following papers
```
@misc{hong2023cogagent,
title={CogAgent: A Visual Language Model for GUI Agents},
author={Wenyi Hong and Weihan Wang and Qingsong Lv and Jiazheng Xu and Wenmeng Yu and Junhui Ji and Yan Wang and Zihan Wang and Yuxiao Dong and Ming Ding and Jie Tang},
year={2023},
eprint={2312.08914},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{wang2023cogvlm,
title={CogVLM: Visual Expert for Pretrained Language Models},
author={Weihan Wang and Qingsong Lv and Wenmeng Yu and Wenyi Hong and Ji Qi and Yan Wang and Junhui Ji and Zhuoyi Yang and Lei Zhao and Xixuan Song and Jiazheng Xu and Bin Xu and Juanzi Li and Yuxiao Dong and Ming Ding and Jie Tang},
year={2023},
eprint={2311.03079},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
In the instruction fine-tuning phase of the CogVLM, there are some English image-text data from the [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4), [LLAVA](https://github.com/haotian-liu/LLaVA), [LRV-Instruction](https://github.com/FuxiaoLiu/LRV-Instruction), [LLaVAR](https://github.com/SALT-NLP/LLaVAR) and [Shikra](https://github.com/shikras/shikra) projects, as well as many classic cross-modal work datasets. We sincerely thank them for their contributions. |