Text Generation
Transformers
Safetensors
English
custom_code
File size: 5,453 Bytes
bb6c740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c742a5
 
bb6c740
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
from torch import nn
from argparse import Namespace
import xformers.ops as xops
from transformers.activations import ACT2FN


class PatchEmbedding(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.proj = nn.Conv2d(config.in_channels, config.hidden_size, kernel_size=config.patch_size, stride=config.patch_size)
        self.cls_embedding = nn.Parameter(torch.zeros(1, config.hidden_size))
        self.position_embedding = nn.Embedding(config.num_positions, config.hidden_size)

    def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
        x = self.proj(images)
        x = x.flatten(2).transpose(1, 2)
        cls_token = self.cls_embedding.expand(x.shape[0], -1, -1)
        x = torch.cat((cls_token, x), dim=1)
        x += self.position_embedding.weight.unsqueeze(0)
        return x


class Attention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.num_heads = config.num_heads
        head_dim = config.hidden_size // config.num_heads
        self.scale = head_dim ** -0.5
        self.query_key_value = nn.Linear(config.hidden_size, config.hidden_size * 3)
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.output_dropout = torch.nn.Dropout(config.dropout_prob)

    def forward(self, x: "tensor(B, L, D)") -> "tensor(B, L, D)":
        B, L, _ = x.shape
        qkv = self.query_key_value(x)
        qkv = qkv.reshape(B, L, 3, self.num_heads, -1).permute(2, 0, 1, 3, 4)  # 3, B, L, H, D
        q, k, v = qkv[0], qkv[1], qkv[2]

        out = xops.memory_efficient_attention(
            q, k, v, scale=self.scale,
        )
        output = self.dense(out.view(B, L, -1))
        output = self.output_dropout(output)
        return output

    def attention(self, q, k, v):
        attn_weights = torch.matmul(q * self.scale, k.transpose(-2, -1))
        attn_weights = attn_weights.softmax(dim=-1)
        output = torch.matmul(attn_weights, v)
        return output


class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.activation_fn = ACT2FN[config.hidden_act]
        self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
        self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.fc1(x)
        x = self.activation_fn(x)
        x = self.fc2(x)
        return x


class TransformerLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.attention = Attention(config)
        self.mlp = MLP(config)
        self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states):
        attention_input = hidden_states
        attention_output = self.input_layernorm(self.attention(attention_input))
        hidden_states = attention_input + attention_output
        mlp_input = hidden_states
        mlp_output = self.post_attention_layernorm(self.mlp(mlp_input))
        output = mlp_input + mlp_output
        return output


class Transformer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.layers = nn.ModuleList([TransformerLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(self, hidden_states):
        for layer_module in self.layers:
            hidden_states = layer_module(hidden_states)
        return hidden_states


class GLU(nn.Module):
    def __init__(self, config, in_features):
        super().__init__()
        self.linear_proj = nn.Linear(in_features, config.hidden_size, bias=False)
        self.norm1 = nn.LayerNorm(config.hidden_size)
        self.act1 = nn.GELU()
        self.act2 = nn.functional.silu
        self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
        self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
        self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)

    def forward(self, x):
        x = self.linear_proj(x)
        x = self.act1(self.norm1(x))
        x = self.act2(self.gate_proj(x)) * self.dense_h_to_4h(x)
        x = self.dense_4h_to_h(x)
        return x


class EVA2CLIPModel(nn.Module):
    def __init__(self, config):
        super().__init__()
        vision_config = Namespace(**config.vision_config)
        self.patch_embedding = PatchEmbedding(vision_config)
        self.transformer = Transformer(vision_config)
        self.linear_proj = GLU(config, in_features=vision_config.hidden_size)
        self.boi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
        self.eoi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
        self.pos_embed = nn.Parameter(torch.zeros((vision_config.image_size // vision_config.patch_size) ** 2, vision_config.hidden_size))

    def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
        x = self.patch_embedding(images)
        x = self.transformer(x)
        x = x[:, 1:]
        x = self.linear_proj(x + self.pos_embed.to(x.device).unsqueeze(0))
        boi = self.boi.to(x.device).expand(x.shape[0], -1, -1)
        eoi = self.eoi.to(x.device).expand(x.shape[0], -1, -1)
        x = torch.cat((boi, x, eoi), dim=1)
        return x