Add print statements
Browse files- modeling_cogvlm.py +10 -4
modeling_cogvlm.py
CHANGED
@@ -241,10 +241,6 @@ class VisionExpertAttention(nn.Module):
|
|
241 |
key_states = self._transpose_for_scores(key_states) # B, H, L, HD
|
242 |
value_states = self._transpose_for_scores(value_states) # B, H, L, HD
|
243 |
|
244 |
-
if print_values:
|
245 |
-
print("Shape of query_states:", query_states.shape)
|
246 |
-
print("First values of query_states:", query_states[0,0,:3,:3])
|
247 |
-
|
248 |
# if print_values:
|
249 |
|
250 |
# torch.save(query_states, "query_states.pt")
|
@@ -287,6 +283,16 @@ class VisionExpertAttention(nn.Module):
|
|
287 |
|
288 |
past_key_value = (key_states, value_states) if use_cache else None
|
289 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
context_layer = attention_fn(
|
291 |
query_layer=query_states, key_layer=key_states, value_layer=value_states, attention_mask=attention_mask,
|
292 |
scaling_attention_score=True, attention_dropout=None)
|
|
|
241 |
key_states = self._transpose_for_scores(key_states) # B, H, L, HD
|
242 |
value_states = self._transpose_for_scores(value_states) # B, H, L, HD
|
243 |
|
|
|
|
|
|
|
|
|
244 |
# if print_values:
|
245 |
|
246 |
# torch.save(query_states, "query_states.pt")
|
|
|
283 |
|
284 |
past_key_value = (key_states, value_states) if use_cache else None
|
285 |
|
286 |
+
if print_values:
|
287 |
+
print("Shape of query_states:", query_states.shape)
|
288 |
+
print("First values of query_states:", query_states[0,0,:3,:3])
|
289 |
+
|
290 |
+
print("Shape of key_states:", key_states.shape)
|
291 |
+
print("First values of key_states:", key_states[0,0,:3,:3])
|
292 |
+
|
293 |
+
print("Shape of value_states:", value_states.shape)
|
294 |
+
print("First values of value_states:", value_states[0,0,:3,:3])
|
295 |
+
|
296 |
context_layer = attention_fn(
|
297 |
query_layer=query_states, key_layer=key_states, value_layer=value_states, attention_mask=attention_mask,
|
298 |
scaling_attention_score=True, attention_dropout=None)
|