Last commit not found
"""largely copy from llama and adapt for cogvlm""" | |
import warnings | |
from typing import TYPE_CHECKING, Optional, Tuple, List, Union, Literal, Dict, Any | |
import math | |
import torch | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from torchvision import transforms | |
from einops import rearrange | |
from transformers import PreTrainedModel, PreTrainedTokenizer | |
from transformers.utils.logging import get_logger | |
from transformers.activations import ACT2FN | |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast | |
from .configuration_cogvlm import CogVLMConfig | |
from .util import FastRotaryEmbedding | |
from .visual import EVA2CLIPModel | |
if TYPE_CHECKING: | |
from transformers.utils import ModelOutput | |
logger = get_logger(__name__) | |
LANGUAGE_TOKEN_TYPE = 0 | |
VISION_TOKEN_TYPE = 1 | |
# Copied from transformers.models.bart.modeling_bart._make_causal_mask | |
def _make_causal_mask( | |
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 | |
): | |
""" | |
Make causal mask used for bi-directional self-attention. | |
""" | |
bsz, tgt_len = input_ids_shape | |
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) | |
mask_cond = torch.arange(mask.size(-1), device=device) | |
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | |
mask = mask.to(dtype) | |
if past_key_values_length > 0: | |
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) | |
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) | |
# Copied from transformers.models.bart.modeling_bart._expand_mask | |
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
""" | |
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
""" | |
bsz, src_len = mask.size() | |
tgt_len = tgt_len if tgt_len is not None else src_len | |
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
inverted_mask = 1.0 - expanded_mask | |
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) | |
class RMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-5): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return (self.weight * hidden_states).to(input_dtype) | |
class MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.intermediate_size = config.intermediate_size | |
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | |
self.act_fn = ACT2FN[config.hidden_act] | |
def forward(self, x): | |
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
return down_proj | |
def get_expert_mask(token_type_ids: "torch.LongTensor(B, L)") -> "[torch.BoolTensor(B, L), torch.BoolTensor(B, L)]": | |
vision_token_mask = torch.zeros_like(token_type_ids, dtype=torch.bool) | |
vision_token_mask[:, :-1] = (token_type_ids[:, :-1] == VISION_TOKEN_TYPE) & (token_type_ids[:, 1:] == VISION_TOKEN_TYPE) | |
language_token_mask = ~vision_token_mask | |
return vision_token_mask, language_token_mask | |
class VisionExpertMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.language_mlp = MLP(config) | |
self.vision_mlp = MLP(config) | |
def forward(self, hidden_states: "torch.Tensor(B, L, D)", token_type_ids: "torch.LongTensor(B, L)"): | |
output = torch.empty(hidden_states.shape, dtype=hidden_states.dtype, device=hidden_states.device) | |
vision_token_mask, language_token_mask = get_expert_mask(token_type_ids) | |
output[vision_token_mask] = self.vision_mlp(hidden_states[vision_token_mask]) | |
output[language_token_mask] = self.language_mlp(hidden_states[language_token_mask]) | |
return output | |
def attention_fn( | |
query_layer: "torch.tensor(B, H, L, HD)", | |
key_layer: "torch.tensor(B, H, L, HD)", | |
value_layer: "torch.tensor(B, H, L, HD)", | |
attention_mask: "torch.tensor(B, H, L, HD)", | |
*, | |
scaling_attention_score: bool = True, | |
attention_dropout: nn.Module = None | |
): | |
attention_mask_bool = (attention_mask == 0) | |
is_low_triangle = (attention_mask_bool == torch.ones_like(attention_mask_bool, dtype=torch.float).tril()).all() | |
is_full = (attention_mask_bool > 0).all() | |
if not (int(torch.__version__.split('.')[0]) >= 2): | |
warnings.warn("It's recommended to use torch2.0 or higher.") | |
if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score and (is_full or is_low_triangle): | |
dropout_p = 0. if attention_dropout is None or not attention_dropout.training else attention_dropout.p | |
return torch.nn.functional.scaled_dot_product_attention( | |
query_layer, key_layer, value_layer, | |
attn_mask=None, | |
dropout_p=dropout_p, | |
is_causal=not is_full | |
) | |
else: | |
if scaling_attention_score: | |
query_layer = query_layer / math.sqrt(query_layer.shape[-1]) | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores + attention_mask | |
attention_scores = nn.functional.softmax(attention_scores, dim=-1, dtype=torch.float32).to(query_layer.dtype) | |
if attention_dropout is not None: | |
attention_scores = attention_dropout(attention_scores) | |
context_layer = torch.matmul(attention_scores, value_layer) | |
return context_layer | |
class VisionExpertAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.num_attention_heads = config.num_attention_heads | |
self.num_multi_query_heads = config.num_multi_query_heads | |
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads | |
self.stride = [self.num_attention_heads, self.num_multi_query_heads, self.num_multi_query_heads] | |
self.qkv_size = self.hidden_size + self.hidden_size_per_attention_head * self.num_multi_query_heads * 2 | |
self.head_dim = self.hidden_size // self.num_attention_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
self.rotary_emb = FastRotaryEmbedding(dim=self.head_dim, pos_idx_in_fp32=False, base=500000) | |
self.vision_expert_query_key_value = nn.Linear(self.hidden_size, self.qkv_size, bias=True) | |
self.vision_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False) | |
self.language_expert_query_key_value = nn.Linear(self.hidden_size, self.qkv_size, bias=False) | |
self.language_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False) | |
def _transpose_for_scores(self, tensor): | |
"""Transpose a 3D tensor [B, L, H*HD] into a 4D tensor with size [B H L HD].""" | |
new_tensor_shape = tensor.size()[:-1] + \ | |
(-1, # flexible for multi-query | |
self.hidden_size_per_attention_head) | |
tensor = tensor.view(*new_tensor_shape) | |
return tensor.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
token_type_ids: torch.LongTensor, | |
position_ids: torch.LongTensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
bsz, q_len, _ = hidden_states.size() | |
vision_token_mask, language_token_mask = get_expert_mask(token_type_ids) | |
shape = list(hidden_states.shape) | |
shape[-1] = self.qkv_size | |
mixed_raw_layer = torch.empty(shape, dtype=hidden_states.dtype, device=hidden_states.device) | |
mixed_raw_layer[vision_token_mask] = self.vision_expert_query_key_value(hidden_states[vision_token_mask]) | |
mixed_raw_layer[language_token_mask] = self.language_expert_query_key_value(hidden_states[language_token_mask]) | |
# query_states, key_states, value_states = torch.split(mixed_raw_layer, self.hidden_size, dim=-1) | |
factor = mixed_raw_layer.size()[-1] // sum(self.stride) | |
query_states, key_states, value_states = torch.split(mixed_raw_layer, [factor * x for x in self.stride], dim=-1) | |
query_states = self._transpose_for_scores(query_states) # B, H, L, HD | |
key_states = self._transpose_for_scores(key_states) # B, H, L, HD | |
value_states = self._transpose_for_scores(value_states) # B, H, L, HD | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value[0].shape[-2] | |
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids=position_ids, max_seqlen=position_ids.max() + 1) | |
if past_key_value is not None: | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
past_key_value = (key_states, value_states) if use_cache else None | |
key_states = key_states.unsqueeze(2).expand(-1, -1, self.num_attention_heads // self.num_multi_query_heads, -1, -1).contiguous().view( | |
bsz, self.num_attention_heads, *key_states.shape[2:]) | |
value_states = value_states.unsqueeze(2).expand(-1, -1, self.num_attention_heads // self.num_multi_query_heads, -1, | |
-1).contiguous().view(bsz, self.num_attention_heads, *value_states.shape[2:]) | |
context_layer = attention_fn( | |
query_layer=query_states, key_layer=key_states, value_layer=value_states, attention_mask=attention_mask, | |
scaling_attention_score=True, attention_dropout=None) | |
if context_layer.size() != (bsz, self.num_attention_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_attention_heads, q_len, self.head_dim)}, but is" | |
f" {context_layer.size()}" | |
) | |
context_layer = context_layer.transpose(1, 2).contiguous().reshape(bsz, q_len, self.hidden_size) | |
attn_output = torch.empty(context_layer.shape, dtype=hidden_states.dtype, device=hidden_states.device) | |
attn_output[vision_token_mask] = self.vision_expert_dense(context_layer[vision_token_mask]) | |
attn_output[language_token_mask] = self.language_expert_dense(context_layer[language_token_mask]) | |
if output_attentions: | |
warnings.warn("output_attentions is not implemented.") | |
return attn_output, None, past_key_value | |
class CogVLMDecoderLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.self_attn = VisionExpertAttention(config=config) | |
self.mlp = VisionExpertMLP(config) | |
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
token_type_ids: torch.LongTensor, | |
position_ids: torch.LongTensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
attention_mask=attention_mask, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = residual + hidden_states | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states, token_type_ids=token_type_ids) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs # type: ignore | |
class CogVLMPreTrainedModel(PreTrainedModel): | |
config_class = CogVLMConfig | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = False | |
_no_split_modules = ["CogVLMDecoderLayer"] | |
_skip_keys_device_placement = "past_key_values" | |
def _init_weights(self, module): | |
std = self.config.initializer_range | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
def is_empty(images_list: Optional[List[List[torch.Tensor]]]): | |
if images_list is None or len(images_list) == 0: | |
return True | |
for image_list in images_list: | |
if len(image_list): | |
return False | |
return True | |
def build_position_ids(x: "torch.BoolTensor(B, L)", attention_mask: Optional["torch.BoolTensor(B, L)"] = None) -> "torch.LongTensor(B, L)": | |
if attention_mask is not None: | |
tmp = x.clone() | |
tmp[~(attention_mask.bool())] = -1 | |
else: | |
tmp = x.clone() | |
# image boi eoi token as LANGUAGE_TOKEN_TYPE | |
is_boi_eoi = torch.zeros_like(x, dtype=torch.bool) | |
is_boi_eoi[:, 1:] |= (tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE) | |
is_boi_eoi[:, 0] |= (tmp[:, 0] == VISION_TOKEN_TYPE) | |
is_boi_eoi[:, :-1] |= (tmp[:, :-1] == VISION_TOKEN_TYPE) & (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE) | |
is_boi_eoi[:, -1] |= (tmp[:, -1] == VISION_TOKEN_TYPE) | |
tmp[is_boi_eoi] = LANGUAGE_TOKEN_TYPE | |
# final position ids | |
y = torch.zeros_like(x, dtype=torch.long) | |
y[:, 1:] = (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE) | ((tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE)) | |
y = y.cumsum(dim=-1) | |
return y | |
class CogVLMModel(CogVLMPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.padding_idx = 128002 | |
self.vocab_size = config.vocab_size | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | |
self.layers = nn.ModuleList([CogVLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.vision = EVA2CLIPModel(config) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def encode_images(self, images: List[List[torch.Tensor]]) -> torch.Tensor: | |
images_list, images = images, [] | |
images = [] | |
for image_list in images_list: | |
for image in image_list: | |
images.append(image) | |
images = torch.stack(images) | |
images_features = self.vision(images) | |
return images_features | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
images: List[List[torch.Tensor]] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPast]: | |
"""take care of image_encode, token_type_ids, position_ids and (attention_mask = None is fine)""" | |
if past_key_values is not None: | |
pass # generate mode with past_key_values. the image features are already mapped | |
else: | |
# not allow for inputs_embeds, because we want to process image feature | |
assert input_ids is not None and inputs_embeds is None, f"{input_ids} {inputs_embeds}" | |
if not is_empty(images): # multi-modality | |
assert token_type_ids is not None, f"multi-modality requires `token_type_ids`!" | |
assert len(input_ids) == len(images), f"{len(input_ids)} {len(images)}" | |
inputs_embeds = self.embed_tokens(input_ids) | |
images_features = self.encode_images(images) | |
images_features = rearrange(images_features, 'b n d -> (b n) d') | |
images_features = images_features.to(dtype=inputs_embeds.dtype, device=inputs_embeds.device) | |
inputs_embeds = inputs_embeds.index_put([token_type_ids == VISION_TOKEN_TYPE], images_features) | |
else: # single-modality | |
if token_type_ids is None: | |
token_type_ids = torch.ones_like(input_ids, dtype=torch.long, device=input_ids.device) * LANGUAGE_TOKEN_TYPE | |
assert not (token_type_ids == VISION_TOKEN_TYPE).any(), f"{(token_type_ids == VISION_TOKEN_TYPE).sum()}" | |
inputs_embeds = self.embed_tokens(input_ids) | |
if position_ids is None: | |
position_ids = build_position_ids(token_type_ids, attention_mask) | |
input_ids = None | |
return self.llm_forward( | |
input_ids=input_ids, | |
token_type_ids=token_type_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
def llm_forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
token_type_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPast]: | |
"""largely copy from llama forward and adapt for cogvlm with `token_type_ids`""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | |
elif input_ids is not None: | |
batch_size, seq_length = input_ids.shape | |
elif inputs_embeds is not None: | |
batch_size, seq_length, _ = inputs_embeds.shape | |
else: | |
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | |
seq_length_with_past = seq_length | |
past_key_values_length = 0 | |
if past_key_values is not None: | |
past_key_values_length = past_key_values[0][0].shape[2] | |
seq_length_with_past = seq_length_with_past + past_key_values_length | |
if position_ids is None: | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
position_ids = torch.arange( | |
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device | |
) | |
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) | |
else: | |
position_ids = position_ids.view(-1, seq_length).long() | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
# embed positions | |
if attention_mask is None: | |
attention_mask = torch.ones( | |
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device | |
) | |
attention_mask = self._prepare_decoder_attention_mask( | |
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length | |
) | |
hidden_states = inputs_embeds | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
next_decoder_cache = () if use_cache else None | |
for idx, decoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
past_key_value = past_key_values[idx] if past_key_values is not None else None | |
layer_outputs = decoder_layer( | |
hidden_states, | |
token_type_ids=token_type_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
hidden_states = self.norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = next_decoder_cache if use_cache else None | |
if not return_dict: | |
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
) | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
# noinspection PyMethodMayBeStatic | |
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask | |
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): | |
# create causal mask | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
combined_attention_mask = None | |
if input_shape[-1] > 1: | |
combined_attention_mask = _make_causal_mask( | |
input_shape, | |
inputs_embeds.dtype, | |
device=inputs_embeds.device, | |
past_key_values_length=past_key_values_length, | |
) | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( | |
inputs_embeds.device | |
) | |
combined_attention_mask = ( | |
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask | |
) | |
return combined_attention_mask | |
def _history_to_prompt(signal_type, history, query): | |
if signal_type == 'base': | |
return query | |
elif signal_type == 'vqa': | |
answer_format = 'Short answer:' | |
elif signal_type == 'chat': | |
answer_format = 'Answer:' | |
else: | |
assert False, f"Unknown signal type {signal_type}" | |
prompt = '' | |
for i, (old_query, response) in enumerate(history): | |
prompt += 'Question: ' + old_query + " {} ".format(answer_format) + response + "\n" | |
prompt += 'Question: {} {}'.format(query, answer_format) | |
return prompt | |
class CogVLMForCausalLM(CogVLMPreTrainedModel): | |
_auto_class = "AutoModelForCausalLM" | |
def __init__(self, config): | |
super().__init__(config) | |
self.model = CogVLMModel(config) | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def set_decoder(self, decoder): | |
self.model = decoder | |
def get_decoder(self): | |
return self.model | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
images: List[List[torch.Tensor]] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
labels: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids=input_ids, | |
images=images, | |
token_type_ids=token_type_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states) | |
logits = logits.float() | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
# Enable model parallelism | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss = loss_fct(shift_logits, shift_labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def _prepare_attention_mask_for_generation( | |
self, | |
inputs: torch.Tensor, | |
pad_token_id: Optional[int], | |
eos_token_id: Optional[Union[int, List[int]]], | |
) -> torch.LongTensor: | |
return torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device) # type: ignore | |
def prepare_inputs_for_generation( | |
self, input_ids, token_type_ids, images=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs | |
): | |
# build position_ids if needed | |
position_ids = kwargs.get("position_ids", None) | |
if position_ids is None: | |
position_ids = build_position_ids(token_type_ids, attention_mask) | |
if past_key_values: | |
input_ids = input_ids[:, -1:] | |
token_type_ids = token_type_ids[:, -1:] | |
position_ids = position_ids[:, -1:] | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
model_inputs.update( | |
{ | |
"token_type_ids": token_type_ids, | |
"images": images, | |
"position_ids": position_ids, | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"attention_mask": attention_mask, | |
} | |
) | |
return model_inputs | |
def _update_model_kwargs_for_generation( | |
self, | |
outputs: "ModelOutput", | |
model_kwargs: Dict[str, Any], | |
is_encoder_decoder: bool = False, | |
standardize_cache_format: bool = False, | |
) -> Dict[str, Any]: | |
# update past_key_values | |
model_kwargs["past_key_values"] = self._extract_past_from_model_output( | |
outputs, standardize_cache_format=standardize_cache_format | |
) | |
if getattr(outputs, "state", None) is not None: | |
model_kwargs["state"] = outputs.state | |
# update token_type_ids with last value | |
if "token_type_ids" in model_kwargs: | |
token_type_ids = model_kwargs["token_type_ids"] | |
new_token_type_ids = torch.ones(size=(token_type_ids.shape[0], 1), dtype=token_type_ids.dtype, device=token_type_ids.device) * LANGUAGE_TOKEN_TYPE | |
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, new_token_type_ids], dim=-1) | |
if not is_encoder_decoder: | |
# update attention mask | |
if "attention_mask" in model_kwargs: | |
attention_mask = model_kwargs["attention_mask"] | |
model_kwargs["attention_mask"] = torch.cat( | |
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 | |
) | |
else: | |
# update decoder attention mask | |
if "decoder_attention_mask" in model_kwargs: | |
decoder_attention_mask = model_kwargs["decoder_attention_mask"] | |
model_kwargs["decoder_attention_mask"] = torch.cat( | |
[decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))], | |
dim=-1, | |
) | |
return model_kwargs | |
def _reorder_cache(self, past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
reordered_past += ( | |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | |
) | |
return reordered_past | |
def build_conversation_input_ids( | |
self, | |
tokenizer: "PreTrainedTokenizer", | |
*, | |
query: str, | |
history: Optional[List[Tuple[str, str]]] = None, | |
images: Optional[List["PIL.Image"]] = None, | |
template_version: Optional[Literal["base", "chat", "vqa"]] = None, | |
answer: str = None, | |
): | |
image_size: int = self.config.vision_config['image_size'] | |
patch_size: int = self.config.vision_config['patch_size'] | |
template_version = template_version or self.config.template_version | |
assert images is None or len(images) <= 1, f"not support multi images by now." | |
history = history or [] | |
text = _history_to_prompt(template_version, history, query) | |
input_ids = [tokenizer.bos_token_id] | |
token_type_ids = [LANGUAGE_TOKEN_TYPE] | |
if images is not None and len(images) == 1: | |
# vision | |
transform = transforms.Compose( | |
[ | |
transforms.Resize( | |
(image_size, image_size), interpolation=transforms.InterpolationMode.BICUBIC | |
), | |
transforms.ToTensor(), | |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), | |
] | |
) | |
images = [transform(images[0])] | |
# language | |
vision_token_num = (image_size // patch_size // 2) * (image_size // patch_size // 2) + 2 | |
tokenizer.pad_token_id = 128002 # llama3 adapt for cogvlm | |
input_ids += [tokenizer.pad_token_id] * vision_token_num | |
token_type_ids += [VISION_TOKEN_TYPE] * vision_token_num | |
text_ids = tokenizer.encode(text, add_special_tokens=False) | |
if answer is not None: | |
answer_ids = tokenizer.encode(answer, add_special_tokens=False) | |
answer_ids += [tokenizer.eos_token_id] | |
text_ids += answer_ids | |
input_ids += text_ids | |
token_type_ids += [LANGUAGE_TOKEN_TYPE] * len(text_ids) | |
attention_mask = [1] * len(input_ids) | |
if answer is not None: | |
labels = [-100 for _ in range(len(input_ids) - len(answer_ids))] + answer_ids | |
labels = torch.tensor(labels, dtype=torch.long) | |
else: | |
labels = None | |
return { | |
'input_ids': torch.tensor(input_ids, dtype=torch.long), | |
'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long), | |
'attention_mask': torch.tensor(attention_mask, dtype=torch.long), | |
'images': images, | |
'labels': labels, | |
} | |