add chat_template, fix metadata
#38
by
jinmingyi
- opened
- .gitignore +0 -3
- README.md +37 -38
- README_en.md +19 -19
- config.json +4 -4
- generation_config.json +1 -1
- modeling_chatglm.py +295 -218
- tokenization_chatglm.py +107 -8
- tokenizer_config.json +0 -1
.gitignore
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
*venv
|
2 |
-
*.DS_Store
|
3 |
-
*.idea/
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -3,31 +3,27 @@ license: other
|
|
3 |
license_name: glm-4
|
4 |
license_link: https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/LICENSE
|
5 |
language:
|
6 |
-
|
7 |
-
|
8 |
tags:
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
inference: false
|
|
|
13 |
---
|
14 |
|
15 |
# GLM-4-9B-Chat
|
16 |
|
17 |
-
Read this in [English](README_en.md)
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。
|
27 |
-
在语义、数学、推理、代码和知识等多方面的数据集测评中,GLM-4-9B 及其人类偏好对齐的版本 GLM-4-9B-Chat 均表现出较高的性能。
|
28 |
-
除了能进行多轮对话,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K
|
29 |
-
上下文)等高级功能。
|
30 |
-
本代模型增加了多语言支持,支持包括日语,韩语,德语在内的 26 种语言。我们还推出了支持 1M 上下文长度(约 200 万中文字符)的模型。
|
31 |
|
32 |
## 评测结果
|
33 |
|
@@ -53,14 +49,14 @@ GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开
|
|
53 |
|
54 |
在六个多语言数据集上对 GLM-4-9B-Chat 和 Llama-3-8B-Instruct 进行了测试,测试结果及数据集对应选取语言如下表
|
55 |
|
56 |
-
| Dataset | Llama-3-8B-Instruct | GLM-4-9B-Chat | Languages
|
57 |
|:------------|:-------------------:|:-------------:|:----------------------------------------------------------------------------------------------:|
|
58 |
-
| M-MMLU | 49.6 | 56.6 | all
|
59 |
-
| FLORES | 25.0 | 28.8 | ru, es, de, fr, it, pt, pl, ja, nl, ar, tr, cs, vi, fa, hu, el, ro, sv, uk, fi, ko, da, bg, no
|
60 |
-
| MGSM | 54.0 | 65.3 | zh, en, bn, de, es, fr, ja, ru, sw, te, th
|
61 |
-
| XWinograd | 61.7 | 73.1 | zh, en, fr, jp, ru, pt
|
62 |
-
| XStoryCloze | 84.7 | 90.7 | zh, en, ar, es, eu, hi, id, my, ru, sw, te
|
63 |
-
| XCOPA | 73.3 | 80.1 | zh, et, ht, id, it, qu, sw, ta, th, tr, vi
|
64 |
|
65 |
### 工具调用能力
|
66 |
|
@@ -78,12 +74,7 @@ GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开
|
|
78 |
|
79 |
## 运行模型
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
**请严格按照[依赖](https://github.com/THUDM/GLM-4/blob/main/basic_demo/requirements.txt)安装,否则无法正常运行。**
|
84 |
-
|
85 |
-
### 使用 transformers 后端进行推理:
|
86 |
-
|
87 |
|
88 |
```python
|
89 |
import torch
|
@@ -161,12 +152,20 @@ GLM-4 模型的权重的使用则需要遵循 [LICENSE](LICENSE)。
|
|
161 |
如果你觉得我们的工作有帮助的话,请考虑引用下列论文。
|
162 |
|
163 |
```
|
164 |
-
@
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
archivePrefix={arXiv},
|
170 |
-
primaryClass={id='cs.CL' full_name='Computation and Language' is_active=True alt_name='cmp-lg' in_archive='cs' is_general=False description='Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.'}
|
171 |
}
|
172 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
license_name: glm-4
|
4 |
license_link: https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/LICENSE
|
5 |
language:
|
6 |
+
- zh
|
7 |
+
- en
|
8 |
tags:
|
9 |
+
- glm
|
10 |
+
- chatglm
|
11 |
+
- thudm
|
12 |
inference: false
|
13 |
+
pipeline_tag: text-generation
|
14 |
---
|
15 |
|
16 |
# GLM-4-9B-Chat
|
17 |
|
18 |
+
Read this in [English](README_en.md)
|
19 |
|
20 |
+
GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。 在语义、数学、推理、代码和知识等多方面的数据集测评中,
|
21 |
+
**GLM-4-9B** 及其人类偏好对齐的版本 **GLM-4-9B-Chat** 均表现出超越 Llama-3-8B 的卓越性能。除了能进行多轮对话,GLM-4-9B-Chat
|
22 |
+
还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K 上下文)等高级功能。本代模型增加了多语言支持,支持包括日语,韩语,德语在内的
|
23 |
+
26 种语言。我们还推出了支持 1M 上下文长度(约 200 万中文字符)的 **GLM-4-9B-Chat-1M** 模型和基于 GLM-4-9B 的多模态模型
|
24 |
+
GLM-4V-9B。**GLM-4V-9B** 具备 1120 * 1120 高分辨率下的中英双语多轮对话能力,在中英文综合能力、感知推理、文字识别、图表理解等多方面多模态评测中,GLM-4V-9B
|
25 |
+
表现出超越 GPT-4-turbo-2024-04-09、Gemini
|
26 |
+
1.0 Pro、Qwen-VL-Max 和 Claude 3 Opus 的卓越性能。
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
## 评测结果
|
29 |
|
|
|
49 |
|
50 |
在六个多语言数据集上对 GLM-4-9B-Chat 和 Llama-3-8B-Instruct 进行了测试,测试结果及数据集对应选取语言如下表
|
51 |
|
52 |
+
| Dataset | Llama-3-8B-Instruct | GLM-4-9B-Chat | Languages |
|
53 |
|:------------|:-------------------:|:-------------:|:----------------------------------------------------------------------------------------------:|
|
54 |
+
| M-MMLU | 49.6 | 56.6 | all |
|
55 |
+
| FLORES | 25.0 | 28.8 | ru, es, de, fr, it, pt, pl, ja, nl, ar, tr, cs, vi, fa, hu, el, ro, sv, uk, fi, ko, da, bg, no |
|
56 |
+
| MGSM | 54.0 | 65.3 | zh, en, bn, de, es, fr, ja, ru, sw, te, th |
|
57 |
+
| XWinograd | 61.7 | 73.1 | zh, en, fr, jp, ru, pt |
|
58 |
+
| XStoryCloze | 84.7 | 90.7 | zh, en, ar, es, eu, hi, id, my, ru, sw, te |
|
59 |
+
| XCOPA | 73.3 | 80.1 | zh, et, ht, id, it, qu, sw, ta, th, tr, vi |
|
60 |
|
61 |
### 工具调用能力
|
62 |
|
|
|
74 |
|
75 |
## 运行模型
|
76 |
|
77 |
+
使用 transformers 后端进行推理:
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
```python
|
80 |
import torch
|
|
|
152 |
如果你觉得我们的工作有帮助的话,请考虑引用下列论文。
|
153 |
|
154 |
```
|
155 |
+
@article{zeng2022glm,
|
156 |
+
title={Glm-130b: An open bilingual pre-trained model},
|
157 |
+
author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others},
|
158 |
+
journal={arXiv preprint arXiv:2210.02414},
|
159 |
+
year={2022}
|
|
|
|
|
160 |
}
|
161 |
```
|
162 |
+
|
163 |
+
```
|
164 |
+
@inproceedings{du2022glm,
|
165 |
+
title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling},
|
166 |
+
author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie},
|
167 |
+
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
|
168 |
+
pages={320--335},
|
169 |
+
year={2022}
|
170 |
+
}
|
171 |
+
```
|
README_en.md
CHANGED
@@ -1,18 +1,12 @@
|
|
1 |
# GLM-4-9B-Chat
|
2 |
|
3 |
-
**2024/08/12, The repository code has been updated and now requires `transformers>=4.44.0`. Please update your dependencies accordingly.**
|
4 |
-
|
5 |
-
**On July 24, 2024, we released the latest technical interpretation related to long texts. Check
|
6 |
-
out [here](https://medium.com/@ChatGLM/glm-long-scaling-pre-trained-model-contexts-to-millions-caa3c48dea85) to view our
|
7 |
-
technical report on long context technology in the training of the open-source GLM-4-9B model.**
|
8 |
-
|
9 |
## Model Introduction
|
10 |
|
11 |
GLM-4-9B is the open-source version of the latest generation of pre-trained models in the GLM-4 series launched by Zhipu
|
12 |
AI. In the evaluation of data sets in semantics, mathematics, reasoning, code, and knowledge, **GLM-4-9B**
|
13 |
and its human preference-aligned version **GLM-4-9B-Chat** have shown superior performance beyond Llama-3-8B. In
|
14 |
addition to multi-round conversations, GLM-4-9B-Chat also has advanced features such as web browsing, code execution,
|
15 |
-
custom tool calls (Function Call), and long
|
16 |
reasoning (supporting up to 128K context). This generation of models has added multi-language support, supporting 26
|
17 |
languages including Japanese, Korean, and German. We have also launched the **GLM-4-9B-Chat-1M** model that supports 1M
|
18 |
context length (about 2 million Chinese characters) and the multimodal model GLM-4V-9B based on GLM-4-9B.
|
@@ -70,12 +64,9 @@ on [Berkeley Function Calling Leaderboard](https://github.com/ShishirPatil/goril
|
|
70 |
|
71 |
**This repository is the model repository of GLM-4-9B-Chat, supporting `128K` context length.**
|
72 |
|
73 |
-
## Quick
|
74 |
|
75 |
-
**For
|
76 |
-
|
77 |
-
**Please strictly follow the [dependencies](https://github.com/THUDM/GLM-4/blob/main/basic_demo/requirements.txt) to
|
78 |
-
install, otherwise it will not run properly**
|
79 |
|
80 |
### Use the following method to quickly call the GLM-4-9B-Chat language model
|
81 |
|
@@ -144,6 +135,7 @@ sampling_params = SamplingParams(temperature=0.95, max_tokens=1024, stop_token_i
|
|
144 |
|
145 |
inputs = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
|
146 |
outputs = llm.generate(prompts=inputs, sampling_params=sampling_params)
|
|
|
147 |
print(outputs[0].outputs[0].text)
|
148 |
```
|
149 |
|
@@ -156,12 +148,20 @@ The weights of the GLM-4 model are available under the terms of [LICENSE](LICENS
|
|
156 |
If you find our work useful, please consider citing the following paper.
|
157 |
|
158 |
```
|
159 |
-
@
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
}
|
167 |
```
|
|
|
1 |
# GLM-4-9B-Chat
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
## Model Introduction
|
4 |
|
5 |
GLM-4-9B is the open-source version of the latest generation of pre-trained models in the GLM-4 series launched by Zhipu
|
6 |
AI. In the evaluation of data sets in semantics, mathematics, reasoning, code, and knowledge, **GLM-4-9B**
|
7 |
and its human preference-aligned version **GLM-4-9B-Chat** have shown superior performance beyond Llama-3-8B. In
|
8 |
addition to multi-round conversations, GLM-4-9B-Chat also has advanced features such as web browsing, code execution,
|
9 |
+
custom tool calls (Function Call), and long text
|
10 |
reasoning (supporting up to 128K context). This generation of models has added multi-language support, supporting 26
|
11 |
languages including Japanese, Korean, and German. We have also launched the **GLM-4-9B-Chat-1M** model that supports 1M
|
12 |
context length (about 2 million Chinese characters) and the multimodal model GLM-4V-9B based on GLM-4-9B.
|
|
|
64 |
|
65 |
**This repository is the model repository of GLM-4-9B-Chat, supporting `128K` context length.**
|
66 |
|
67 |
+
## Quick call
|
68 |
|
69 |
+
**For hardware configuration and system requirements, please check [here](basic_demo/README_en.md).**
|
|
|
|
|
|
|
70 |
|
71 |
### Use the following method to quickly call the GLM-4-9B-Chat language model
|
72 |
|
|
|
135 |
|
136 |
inputs = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
|
137 |
outputs = llm.generate(prompts=inputs, sampling_params=sampling_params)
|
138 |
+
|
139 |
print(outputs[0].outputs[0].text)
|
140 |
```
|
141 |
|
|
|
148 |
If you find our work useful, please consider citing the following paper.
|
149 |
|
150 |
```
|
151 |
+
@article{zeng2022glm,
|
152 |
+
title={Glm-130b: An open bilingual pre-trained model},
|
153 |
+
author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others},
|
154 |
+
journal={arXiv preprint arXiv:2210.02414},
|
155 |
+
year={2022}
|
156 |
+
}
|
157 |
+
```
|
158 |
+
|
159 |
+
```
|
160 |
+
@inproceedings{du2022glm,
|
161 |
+
title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling},
|
162 |
+
author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie},
|
163 |
+
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
|
164 |
+
pages={320--335},
|
165 |
+
year={2022}
|
166 |
}
|
167 |
```
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "THUDM/
|
3 |
"model_type": "chatglm",
|
4 |
"architectures": [
|
5 |
"ChatGLMModel"
|
@@ -17,7 +17,6 @@
|
|
17 |
"apply_residual_connection_post_layernorm": false,
|
18 |
"attention_dropout": 0.0,
|
19 |
"attention_softmax_in_fp32": true,
|
20 |
-
"attn_implementation": "sdpa",
|
21 |
"bias_dropout_fusion": true,
|
22 |
"ffn_hidden_size": 13696,
|
23 |
"fp32_residual_connection": false,
|
@@ -38,8 +37,9 @@
|
|
38 |
"seq_length": 131072,
|
39 |
"use_cache": true,
|
40 |
"torch_dtype": "bfloat16",
|
41 |
-
"transformers_version": "4.
|
42 |
"tie_word_embeddings": false,
|
43 |
"eos_token_id": [151329, 151336, 151338],
|
44 |
"pad_token_id": 151329
|
45 |
-
}
|
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "THUDM/glm4-9b-chat",
|
3 |
"model_type": "chatglm",
|
4 |
"architectures": [
|
5 |
"ChatGLMModel"
|
|
|
17 |
"apply_residual_connection_post_layernorm": false,
|
18 |
"attention_dropout": 0.0,
|
19 |
"attention_softmax_in_fp32": true,
|
|
|
20 |
"bias_dropout_fusion": true,
|
21 |
"ffn_hidden_size": 13696,
|
22 |
"fp32_residual_connection": false,
|
|
|
37 |
"seq_length": 131072,
|
38 |
"use_cache": true,
|
39 |
"torch_dtype": "bfloat16",
|
40 |
+
"transformers_version": "4.30.2",
|
41 |
"tie_word_embeddings": false,
|
42 |
"eos_token_id": [151329, 151336, 151338],
|
43 |
"pad_token_id": 151329
|
44 |
+
}
|
45 |
+
|
generation_config.json
CHANGED
@@ -9,5 +9,5 @@
|
|
9 |
"temperature": 0.8,
|
10 |
"max_length": 128000,
|
11 |
"top_p": 0.8,
|
12 |
-
"transformers_version": "4.
|
13 |
}
|
|
|
9 |
"temperature": 0.8,
|
10 |
"max_length": 128000,
|
11 |
"top_p": 0.8,
|
12 |
+
"transformers_version": "4.38.2"
|
13 |
}
|
modeling_chatglm.py
CHANGED
@@ -1,14 +1,19 @@
|
|
1 |
""" PyTorch ChatGLM model. """
|
2 |
-
|
3 |
import math
|
|
|
|
|
|
|
4 |
import sys
|
|
|
5 |
import torch
|
6 |
import torch.utils.checkpoint
|
7 |
import torch.nn.functional as F
|
8 |
from torch import nn
|
9 |
from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
|
10 |
from torch.nn.utils import skip_init
|
11 |
-
from typing import Optional, Tuple, Union, List, Dict, Any
|
|
|
12 |
|
13 |
from transformers.modeling_outputs import (
|
14 |
BaseModelOutputWithPast,
|
@@ -16,24 +21,15 @@ from transformers.modeling_outputs import (
|
|
16 |
SequenceClassifierOutputWithPast,
|
17 |
)
|
18 |
from transformers.modeling_utils import PreTrainedModel
|
19 |
-
from transformers.utils import logging
|
20 |
from transformers.generation.logits_process import LogitsProcessor
|
21 |
-
from transformers.generation.utils import ModelOutput
|
22 |
|
23 |
from .configuration_chatglm import ChatGLMConfig
|
24 |
|
25 |
-
try:
|
26 |
-
from transformers.utils import is_flash_attn_greater_or_equal_2_10, is_flash_attn_2_available
|
27 |
-
|
28 |
-
if is_flash_attn_2_available():
|
29 |
-
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
30 |
-
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
31 |
-
except:
|
32 |
-
pass
|
33 |
-
|
34 |
# flags required to enable jit fusion kernels
|
35 |
|
36 |
-
if sys.platform != 'darwin'
|
37 |
torch._C._jit_set_profiling_mode(False)
|
38 |
torch._C._jit_set_profiling_executor(False)
|
39 |
torch._C._jit_override_can_fuse_on_cpu(True)
|
@@ -44,7 +40,6 @@ logger = logging.get_logger(__name__)
|
|
44 |
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
|
45 |
_CONFIG_FOR_DOC = "ChatGLMConfig"
|
46 |
|
47 |
-
|
48 |
def default_init(cls, *args, **kwargs):
|
49 |
return cls(*args, **kwargs)
|
50 |
|
@@ -164,13 +159,12 @@ class RMSNorm(torch.nn.Module):
|
|
164 |
class CoreAttention(torch.nn.Module):
|
165 |
def __init__(self, config: ChatGLMConfig, layer_number):
|
166 |
super(CoreAttention, self).__init__()
|
167 |
-
|
168 |
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
|
169 |
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
170 |
if self.apply_query_key_layer_scaling:
|
171 |
self.attention_softmax_in_fp32 = True
|
172 |
self.layer_number = max(1, layer_number)
|
173 |
-
self.is_causal = True
|
174 |
|
175 |
projection_size = config.kv_channels * config.num_attention_heads
|
176 |
|
@@ -189,199 +183,91 @@ class CoreAttention(torch.nn.Module):
|
|
189 |
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
190 |
|
191 |
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
# Raw attention scores. [b * np, sq, sk]
|
207 |
-
matmul_result = torch.baddbmm(
|
208 |
-
matmul_input_buffer,
|
209 |
-
query_layer, # [b * np, sq, hn]
|
210 |
-
key_layer.transpose(1, 2), # [b * np, hn, sk]
|
211 |
-
beta=0.0,
|
212 |
-
alpha=(1.0 / self.norm_factor),
|
213 |
-
)
|
214 |
-
|
215 |
-
# change view to [b, np, sq, sk]
|
216 |
-
attention_scores = matmul_result.view(*output_size)
|
217 |
-
|
218 |
-
# ===========================
|
219 |
-
# Attention probs and dropout
|
220 |
-
# ===========================
|
221 |
-
|
222 |
-
# attention scores and attention mask [b, np, sq, sk]
|
223 |
-
if self.attention_softmax_in_fp32:
|
224 |
-
attention_scores = attention_scores.float()
|
225 |
-
if self.coeff is not None:
|
226 |
-
attention_scores = attention_scores * self.coeff
|
227 |
-
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
228 |
-
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
|
229 |
-
device=attention_scores.device, dtype=torch.bool)
|
230 |
-
attention_mask.tril_()
|
231 |
-
attention_mask = ~attention_mask
|
232 |
-
if attention_mask is not None:
|
233 |
-
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
|
234 |
-
attention_probs = F.softmax(attention_scores, dim=-1)
|
235 |
-
attention_probs = attention_probs.type_as(value_layer)
|
236 |
-
|
237 |
-
# This is actually dropping out entire tokens to attend to, which might
|
238 |
-
# seem a bit unusual, but is taken from the original Transformer paper.
|
239 |
-
attention_probs = self.attention_dropout(attention_probs)
|
240 |
-
|
241 |
-
# query layer shape: [b * np, sq, hn]
|
242 |
-
# value layer shape: [b, np, sk, hn]
|
243 |
-
# attention shape: [b, np, sq, sk]
|
244 |
-
# context layer shape: [b, np, sq, hn]
|
245 |
-
output_size = (value_layer.size(0), value_layer.size(1), query_layer.size(1), value_layer.size(3))
|
246 |
-
# change view [b * np, sk, hn]
|
247 |
-
value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
|
248 |
-
# change view [b * np, sq, sk]
|
249 |
-
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
250 |
-
# matmul: [b * np, sq, hn]
|
251 |
-
context_layer = torch.bmm(attention_probs, value_layer)
|
252 |
-
# change view [b, np, sq, hn]
|
253 |
-
context_layer = context_layer.view(*output_size)
|
254 |
-
# [b, np, sq, hn] --> [b, sq, np, hn]
|
255 |
-
context_layer = context_layer.transpose(1, 2).contiguous()
|
256 |
-
# [b, sq, np, hn] --> [b, sq, hp]
|
257 |
-
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
258 |
-
context_layer = context_layer.reshape(*new_context_layer_shape)
|
259 |
-
|
260 |
-
return context_layer
|
261 |
-
|
262 |
-
|
263 |
-
class SdpaAttention(CoreAttention):
|
264 |
-
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
265 |
-
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
266 |
-
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
267 |
-
is_causal=True,
|
268 |
-
dropout_p=self.config.attention_dropout if self.training else 0.0)
|
269 |
else:
|
270 |
-
|
271 |
-
attention_mask = ~attention_mask
|
272 |
-
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
273 |
-
attention_mask,
|
274 |
-
dropout_p=self.config.attention_dropout if self.training else 0.0)
|
275 |
-
context_layer = context_layer.transpose(1, 2).contiguous()
|
276 |
-
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
277 |
-
context_layer = context_layer.reshape(*new_context_layer_shape)
|
278 |
-
return context_layer
|
279 |
-
|
280 |
-
|
281 |
-
def _get_unpad_data(attention_mask):
|
282 |
-
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
283 |
-
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
284 |
-
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
285 |
-
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
286 |
-
return (
|
287 |
-
indices,
|
288 |
-
cu_seqlens,
|
289 |
-
max_seqlen_in_batch,
|
290 |
-
)
|
291 |
|
|
|
|
|
292 |
|
293 |
-
#
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
298 |
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
batch_size, query_length = query_states.shape[:2]
|
304 |
-
if not self._flash_attn_uses_top_left_mask:
|
305 |
-
causal = self.is_causal
|
306 |
-
else:
|
307 |
-
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
308 |
-
causal = self.is_causal and query_length != 1
|
309 |
-
dropout = self.config.attention_dropout if self.training else 0.0
|
310 |
-
# Contains at least one padding token in the sequence
|
311 |
-
if attention_mask is not None:
|
312 |
-
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
313 |
-
query_states, key_states, value_states, attention_mask, query_length
|
314 |
-
)
|
315 |
-
|
316 |
-
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
317 |
-
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
318 |
-
|
319 |
-
attn_output_unpad = flash_attn_varlen_func(
|
320 |
-
query_states,
|
321 |
-
key_states,
|
322 |
-
value_states,
|
323 |
-
cu_seqlens_q=cu_seqlens_q,
|
324 |
-
cu_seqlens_k=cu_seqlens_k,
|
325 |
-
max_seqlen_q=max_seqlen_in_batch_q,
|
326 |
-
max_seqlen_k=max_seqlen_in_batch_k,
|
327 |
-
dropout_p=dropout,
|
328 |
-
softmax_scale=None,
|
329 |
-
causal=causal,
|
330 |
)
|
331 |
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
|
|
|
|
|
|
336 |
)
|
337 |
-
attn_output = attn_output.reshape(batch_size, query_length, self.hidden_size_per_partition).contiguous()
|
338 |
-
return attn_output
|
339 |
-
|
340 |
-
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
341 |
-
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
342 |
-
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
343 |
-
|
344 |
-
key_layer = index_first_axis(
|
345 |
-
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
346 |
-
)
|
347 |
-
value_layer = index_first_axis(
|
348 |
-
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
349 |
-
)
|
350 |
-
if query_length == kv_seq_len:
|
351 |
-
query_layer = index_first_axis(
|
352 |
-
query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads_per_partition, head_dim),
|
353 |
-
indices_k
|
354 |
-
)
|
355 |
-
cu_seqlens_q = cu_seqlens_k
|
356 |
-
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
357 |
-
indices_q = indices_k
|
358 |
-
elif query_length == 1:
|
359 |
-
max_seqlen_in_batch_q = 1
|
360 |
-
cu_seqlens_q = torch.arange(
|
361 |
-
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
362 |
-
) # There is a memcpy here, that is very bad.
|
363 |
-
indices_q = cu_seqlens_q[:-1]
|
364 |
-
query_layer = query_layer.squeeze(1)
|
365 |
-
else:
|
366 |
-
# The -q_len: slice assumes left padding.
|
367 |
-
attention_mask = attention_mask[:, -query_length:]
|
368 |
-
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
369 |
-
|
370 |
-
return (
|
371 |
-
query_layer,
|
372 |
-
key_layer,
|
373 |
-
value_layer,
|
374 |
-
indices_q,
|
375 |
-
(cu_seqlens_q, cu_seqlens_k),
|
376 |
-
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
377 |
-
)
|
378 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
379 |
|
380 |
-
|
381 |
-
"eager": CoreAttention,
|
382 |
-
"sdpa": SdpaAttention,
|
383 |
-
"flash_attention_2": FlashAttention2
|
384 |
-
}
|
385 |
|
386 |
|
387 |
class SelfAttention(torch.nn.Module):
|
@@ -413,7 +299,7 @@ class SelfAttention(torch.nn.Module):
|
|
413 |
device=device, **_config_to_kwargs(config)
|
414 |
)
|
415 |
|
416 |
-
self.core_attention =
|
417 |
|
418 |
# Output.
|
419 |
self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
|
@@ -492,8 +378,7 @@ class SelfAttention(torch.nn.Module):
|
|
492 |
value_layer = torch.cat((cache_v, value_layer), dim=2)
|
493 |
if use_cache:
|
494 |
if kv_cache is None:
|
495 |
-
kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), value_layer.unsqueeze(0).unsqueeze(0)),
|
496 |
-
dim=1)
|
497 |
else:
|
498 |
kv_cache = (key_layer, value_layer)
|
499 |
else:
|
@@ -759,18 +644,12 @@ class ChatGLMPreTrainedModel(PreTrainedModel):
|
|
759 |
config_class = ChatGLMConfig
|
760 |
base_model_prefix = "transformer"
|
761 |
_no_split_modules = ["GLMBlock"]
|
762 |
-
_supports_flash_attn_2 = True
|
763 |
-
_supports_sdpa = True
|
764 |
|
765 |
def _init_weights(self, module: nn.Module):
|
766 |
"""Initialize the weights."""
|
767 |
return
|
768 |
|
769 |
def get_masks(self, input_ids, past_key_values, padding_mask=None):
|
770 |
-
if self.config._attn_implementation == "flash_attention_2":
|
771 |
-
if padding_mask is not None and not padding_mask.all():
|
772 |
-
return padding_mask
|
773 |
-
return None
|
774 |
batch_size, seq_length = input_ids.shape
|
775 |
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
|
776 |
full_attention_mask.tril_()
|
@@ -793,6 +672,11 @@ class ChatGLMPreTrainedModel(PreTrainedModel):
|
|
793 |
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
794 |
return position_ids
|
795 |
|
|
|
|
|
|
|
|
|
|
|
796 |
class Embedding(torch.nn.Module):
|
797 |
"""Language model embeddings."""
|
798 |
|
@@ -840,8 +724,7 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
840 |
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
|
841 |
)
|
842 |
|
843 |
-
self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, rope_ratio=config.rope_ratio,
|
844 |
-
original_impl=config.original_rope,
|
845 |
device=device, dtype=config.torch_dtype)
|
846 |
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
|
847 |
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
|
@@ -862,7 +745,6 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
862 |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
863 |
inputs_embeds: Optional[torch.Tensor] = None,
|
864 |
use_cache: Optional[bool] = None,
|
865 |
-
output_attentions: Optional[bool] = None,
|
866 |
output_hidden_states: Optional[bool] = None,
|
867 |
return_dict: Optional[bool] = None,
|
868 |
):
|
@@ -924,10 +806,12 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
924 |
outputs: ModelOutput,
|
925 |
model_kwargs: Dict[str, Any],
|
926 |
is_encoder_decoder: bool = False,
|
|
|
927 |
) -> Dict[str, Any]:
|
928 |
# update past_key_values
|
929 |
-
|
930 |
-
|
|
|
931 |
|
932 |
# update attention mask
|
933 |
if "attention_mask" in model_kwargs:
|
@@ -1052,6 +936,201 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
1052 |
for layer_past in past
|
1053 |
)
|
1054 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1055 |
|
1056 |
class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
1057 |
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
|
@@ -1060,7 +1139,7 @@ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
|
1060 |
self.num_labels = config.num_labels
|
1061 |
self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
|
1062 |
|
1063 |
-
self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=
|
1064 |
if config.classifier_dropout is not None:
|
1065 |
self.dropout = nn.Dropout(config.classifier_dropout)
|
1066 |
else:
|
@@ -1077,7 +1156,6 @@ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
|
1077 |
inputs_embeds: Optional[torch.LongTensor] = None,
|
1078 |
labels: Optional[torch.LongTensor] = None,
|
1079 |
use_cache: Optional[bool] = None,
|
1080 |
-
output_attentions: Optional[bool] = None,
|
1081 |
output_hidden_states: Optional[bool] = None,
|
1082 |
return_dict: Optional[bool] = None,
|
1083 |
) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
|
@@ -1091,7 +1169,6 @@ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
|
1091 |
past_key_values=past_key_values,
|
1092 |
inputs_embeds=inputs_embeds,
|
1093 |
use_cache=use_cache,
|
1094 |
-
output_attentions=output_attentions,
|
1095 |
output_hidden_states=output_hidden_states,
|
1096 |
return_dict=return_dict,
|
1097 |
)
|
|
|
1 |
""" PyTorch ChatGLM model. """
|
2 |
+
import json
|
3 |
import math
|
4 |
+
import copy
|
5 |
+
import warnings
|
6 |
+
import re
|
7 |
import sys
|
8 |
+
|
9 |
import torch
|
10 |
import torch.utils.checkpoint
|
11 |
import torch.nn.functional as F
|
12 |
from torch import nn
|
13 |
from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
|
14 |
from torch.nn.utils import skip_init
|
15 |
+
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
|
16 |
+
from copy import deepcopy
|
17 |
|
18 |
from transformers.modeling_outputs import (
|
19 |
BaseModelOutputWithPast,
|
|
|
21 |
SequenceClassifierOutputWithPast,
|
22 |
)
|
23 |
from transformers.modeling_utils import PreTrainedModel
|
24 |
+
from transformers.utils import logging
|
25 |
from transformers.generation.logits_process import LogitsProcessor
|
26 |
+
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
|
27 |
|
28 |
from .configuration_chatglm import ChatGLMConfig
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
# flags required to enable jit fusion kernels
|
31 |
|
32 |
+
if sys.platform != 'darwin':
|
33 |
torch._C._jit_set_profiling_mode(False)
|
34 |
torch._C._jit_set_profiling_executor(False)
|
35 |
torch._C._jit_override_can_fuse_on_cpu(True)
|
|
|
40 |
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
|
41 |
_CONFIG_FOR_DOC = "ChatGLMConfig"
|
42 |
|
|
|
43 |
def default_init(cls, *args, **kwargs):
|
44 |
return cls(*args, **kwargs)
|
45 |
|
|
|
159 |
class CoreAttention(torch.nn.Module):
|
160 |
def __init__(self, config: ChatGLMConfig, layer_number):
|
161 |
super(CoreAttention, self).__init__()
|
162 |
+
|
163 |
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
|
164 |
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
165 |
if self.apply_query_key_layer_scaling:
|
166 |
self.attention_softmax_in_fp32 = True
|
167 |
self.layer_number = max(1, layer_number)
|
|
|
168 |
|
169 |
projection_size = config.kv_channels * config.num_attention_heads
|
170 |
|
|
|
183 |
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
184 |
|
185 |
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
186 |
+
pytorch_major_version = int(torch.__version__.split('.')[0])
|
187 |
+
if pytorch_major_version >= 2:
|
188 |
+
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
189 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
190 |
+
is_causal=True)
|
191 |
+
else:
|
192 |
+
if attention_mask is not None:
|
193 |
+
attention_mask = ~attention_mask
|
194 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
195 |
+
attention_mask)
|
196 |
+
context_layer = context_layer.transpose(1, 2).contiguous()
|
197 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
198 |
+
context_layer = context_layer.reshape(*new_context_layer_shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
else:
|
200 |
+
# Raw attention scores
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
+
# [b, np, sq, sk]
|
203 |
+
output_size = (query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2))
|
204 |
|
205 |
+
# [b, np, sq, hn] -> [b * np, sq, hn]
|
206 |
+
query_layer = query_layer.view(output_size[0] * output_size[1], output_size[2], -1)
|
207 |
+
# [b, np, sk, hn] -> [b * np, sk, hn]
|
208 |
+
key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1)
|
|
|
209 |
|
210 |
+
# preallocting input tensor: [b * np, sq, sk]
|
211 |
+
matmul_input_buffer = torch.empty(
|
212 |
+
output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
|
213 |
+
device=query_layer.device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
)
|
215 |
|
216 |
+
# Raw attention scores. [b * np, sq, sk]
|
217 |
+
matmul_result = torch.baddbmm(
|
218 |
+
matmul_input_buffer,
|
219 |
+
query_layer, # [b * np, sq, hn]
|
220 |
+
key_layer.transpose(1, 2), # [b * np, hn, sk]
|
221 |
+
beta=0.0,
|
222 |
+
alpha=(1.0 / self.norm_factor),
|
223 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
+
# change view to [b, np, sq, sk]
|
226 |
+
attention_scores = matmul_result.view(*output_size)
|
227 |
+
|
228 |
+
# ===========================
|
229 |
+
# Attention probs and dropout
|
230 |
+
# ===========================
|
231 |
+
|
232 |
+
# attention scores and attention mask [b, np, sq, sk]
|
233 |
+
if self.attention_softmax_in_fp32:
|
234 |
+
attention_scores = attention_scores.float()
|
235 |
+
if self.coeff is not None:
|
236 |
+
attention_scores = attention_scores * self.coeff
|
237 |
+
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
238 |
+
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
|
239 |
+
device=attention_scores.device, dtype=torch.bool)
|
240 |
+
attention_mask.tril_()
|
241 |
+
attention_mask = ~attention_mask
|
242 |
+
if attention_mask is not None:
|
243 |
+
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
|
244 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
245 |
+
attention_probs = attention_probs.type_as(value_layer)
|
246 |
+
|
247 |
+
# This is actually dropping out entire tokens to attend to, which might
|
248 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
249 |
+
attention_probs = self.attention_dropout(attention_probs)
|
250 |
+
|
251 |
+
# query layer shape: [b * np, sq, hn]
|
252 |
+
# value layer shape: [b, np, sk, hn]
|
253 |
+
# attention shape: [b, np, sq, sk]
|
254 |
+
# context layer shape: [b, np, sq, hn]
|
255 |
+
output_size = (value_layer.size(0), value_layer.size(1), query_layer.size(1), value_layer.size(3))
|
256 |
+
# change view [b * np, sk, hn]
|
257 |
+
value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
|
258 |
+
# change view [b * np, sq, sk]
|
259 |
+
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
260 |
+
# matmul: [b * np, sq, hn]
|
261 |
+
context_layer = torch.bmm(attention_probs, value_layer)
|
262 |
+
# change view [b, np, sq, hn]
|
263 |
+
context_layer = context_layer.view(*output_size)
|
264 |
+
# [b, np, sq, hn] --> [b, sq, np, hn]
|
265 |
+
context_layer = context_layer.transpose(1, 2).contiguous()
|
266 |
+
# [b, sq, np, hn] --> [b, sq, hp]
|
267 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
268 |
+
context_layer = context_layer.reshape(*new_context_layer_shape)
|
269 |
|
270 |
+
return context_layer
|
|
|
|
|
|
|
|
|
271 |
|
272 |
|
273 |
class SelfAttention(torch.nn.Module):
|
|
|
299 |
device=device, **_config_to_kwargs(config)
|
300 |
)
|
301 |
|
302 |
+
self.core_attention = CoreAttention(config, self.layer_number)
|
303 |
|
304 |
# Output.
|
305 |
self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
|
|
|
378 |
value_layer = torch.cat((cache_v, value_layer), dim=2)
|
379 |
if use_cache:
|
380 |
if kv_cache is None:
|
381 |
+
kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), value_layer.unsqueeze(0).unsqueeze(0)), dim=1)
|
|
|
382 |
else:
|
383 |
kv_cache = (key_layer, value_layer)
|
384 |
else:
|
|
|
644 |
config_class = ChatGLMConfig
|
645 |
base_model_prefix = "transformer"
|
646 |
_no_split_modules = ["GLMBlock"]
|
|
|
|
|
647 |
|
648 |
def _init_weights(self, module: nn.Module):
|
649 |
"""Initialize the weights."""
|
650 |
return
|
651 |
|
652 |
def get_masks(self, input_ids, past_key_values, padding_mask=None):
|
|
|
|
|
|
|
|
|
653 |
batch_size, seq_length = input_ids.shape
|
654 |
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
|
655 |
full_attention_mask.tril_()
|
|
|
672 |
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
673 |
return position_ids
|
674 |
|
675 |
+
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
|
676 |
+
if not self.supports_gradient_checkpointing:
|
677 |
+
raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
|
678 |
+
|
679 |
+
|
680 |
class Embedding(torch.nn.Module):
|
681 |
"""Language model embeddings."""
|
682 |
|
|
|
724 |
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
|
725 |
)
|
726 |
|
727 |
+
self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, rope_ratio=config.rope_ratio, original_impl=config.original_rope,
|
|
|
728 |
device=device, dtype=config.torch_dtype)
|
729 |
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
|
730 |
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
|
|
|
745 |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
746 |
inputs_embeds: Optional[torch.Tensor] = None,
|
747 |
use_cache: Optional[bool] = None,
|
|
|
748 |
output_hidden_states: Optional[bool] = None,
|
749 |
return_dict: Optional[bool] = None,
|
750 |
):
|
|
|
806 |
outputs: ModelOutput,
|
807 |
model_kwargs: Dict[str, Any],
|
808 |
is_encoder_decoder: bool = False,
|
809 |
+
standardize_cache_format: bool = False,
|
810 |
) -> Dict[str, Any]:
|
811 |
# update past_key_values
|
812 |
+
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
813 |
+
outputs, standardize_cache_format=standardize_cache_format
|
814 |
+
)
|
815 |
|
816 |
# update attention mask
|
817 |
if "attention_mask" in model_kwargs:
|
|
|
936 |
for layer_past in past
|
937 |
)
|
938 |
|
939 |
+
def process_response(self, output, history):
|
940 |
+
content = ""
|
941 |
+
history = deepcopy(history)
|
942 |
+
for response in output.split("<|assistant|>"):
|
943 |
+
if "\n" in response:
|
944 |
+
metadata, content = response.split("\n", maxsplit=1)
|
945 |
+
else:
|
946 |
+
metadata, content = "", response
|
947 |
+
if not metadata.strip():
|
948 |
+
content = content.strip()
|
949 |
+
history.append({"role": "assistant", "metadata": metadata, "content": content})
|
950 |
+
content = content.replace("[[训练时间]]", "2023年")
|
951 |
+
else:
|
952 |
+
history.append({"role": "assistant", "metadata": metadata, "content": content})
|
953 |
+
if history[0]["role"] == "system" and "tools" in history[0]:
|
954 |
+
parameters = json.loads(content)
|
955 |
+
content = {"name": metadata.strip(), "parameters": parameters}
|
956 |
+
else:
|
957 |
+
content = {"name": metadata.strip(), "content": content}
|
958 |
+
return content, history
|
959 |
+
|
960 |
+
@torch.inference_mode()
|
961 |
+
def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
|
962 |
+
max_length: int = 8192, num_beams=1, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
|
963 |
+
**kwargs):
|
964 |
+
if history is None:
|
965 |
+
history = []
|
966 |
+
if logits_processor is None:
|
967 |
+
logits_processor = LogitsProcessorList()
|
968 |
+
logits_processor.append(InvalidScoreLogitsProcessor())
|
969 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
970 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
971 |
+
history.append({"role": role, "content": query})
|
972 |
+
inputs = tokenizer.apply_chat_template(history, add_generation_prompt=True, tokenize=True,
|
973 |
+
return_tensors="pt", return_dict=True)
|
974 |
+
inputs = inputs.to(self.device)
|
975 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|user|>"),
|
976 |
+
tokenizer.convert_tokens_to_ids("<|observation|>")]
|
977 |
+
outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
|
978 |
+
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
|
979 |
+
response = tokenizer.decode(outputs)
|
980 |
+
response, history = self.process_response(response, history)
|
981 |
+
return response, history
|
982 |
+
|
983 |
+
@torch.inference_mode()
|
984 |
+
def stream_chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
|
985 |
+
past_key_values=None, max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8,
|
986 |
+
logits_processor=None, return_past_key_values=False, **kwargs):
|
987 |
+
if history is None:
|
988 |
+
history = []
|
989 |
+
if logits_processor is None:
|
990 |
+
logits_processor = LogitsProcessorList()
|
991 |
+
logits_processor.append(InvalidScoreLogitsProcessor())
|
992 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|user|>"),
|
993 |
+
tokenizer.convert_tokens_to_ids("<|observation|>")]
|
994 |
+
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
|
995 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
996 |
+
if past_key_values is None:
|
997 |
+
inputs = tokenizer.apply_chat_template(history + [{"role": role, "content": query}],
|
998 |
+
add_generation_prompt=True, tokenize=True, return_tensors="pt",
|
999 |
+
return_dict=True)
|
1000 |
+
else:
|
1001 |
+
inputs = tokenizer.apply_chat_template([{"role": role, "content": query}], add_special_tokens=False,
|
1002 |
+
add_generation_prompt=True, tokenize=True, return_tensors="pt",
|
1003 |
+
return_dict=True)
|
1004 |
+
inputs = inputs.to(self.device)
|
1005 |
+
if past_key_values is not None:
|
1006 |
+
past_length = past_key_values[0][0].shape[2]
|
1007 |
+
inputs.position_ids += past_length
|
1008 |
+
attention_mask = inputs.attention_mask
|
1009 |
+
attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
|
1010 |
+
inputs['attention_mask'] = attention_mask
|
1011 |
+
history.append({"role": role, "content": query})
|
1012 |
+
for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
|
1013 |
+
eos_token_id=eos_token_id, return_past_key_values=return_past_key_values,
|
1014 |
+
**gen_kwargs):
|
1015 |
+
if return_past_key_values:
|
1016 |
+
outputs, past_key_values = outputs
|
1017 |
+
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
|
1018 |
+
response = tokenizer.decode(outputs)
|
1019 |
+
if response and response[-1] != "�":
|
1020 |
+
response, new_history = self.process_response(response, history)
|
1021 |
+
if return_past_key_values:
|
1022 |
+
yield response, new_history, past_key_values
|
1023 |
+
else:
|
1024 |
+
yield response, new_history
|
1025 |
+
|
1026 |
+
@torch.inference_mode()
|
1027 |
+
def stream_generate(
|
1028 |
+
self,
|
1029 |
+
input_ids,
|
1030 |
+
generation_config: Optional[GenerationConfig] = None,
|
1031 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
1032 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
1033 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
1034 |
+
return_past_key_values=False,
|
1035 |
+
**kwargs,
|
1036 |
+
):
|
1037 |
+
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
1038 |
+
|
1039 |
+
if generation_config is None:
|
1040 |
+
generation_config = self.generation_config
|
1041 |
+
generation_config = copy.deepcopy(generation_config)
|
1042 |
+
model_kwargs = generation_config.update(**kwargs)
|
1043 |
+
model_kwargs["use_cache"] = generation_config.use_cache
|
1044 |
+
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
|
1045 |
+
|
1046 |
+
if isinstance(eos_token_id, int):
|
1047 |
+
eos_token_id = [eos_token_id]
|
1048 |
+
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
|
1049 |
+
|
1050 |
+
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
1051 |
+
if has_default_max_length and generation_config.max_new_tokens is None:
|
1052 |
+
warnings.warn(
|
1053 |
+
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
1054 |
+
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
1055 |
+
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
1056 |
+
UserWarning,
|
1057 |
+
)
|
1058 |
+
elif generation_config.max_new_tokens is not None:
|
1059 |
+
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
1060 |
+
if not has_default_max_length:
|
1061 |
+
logger.warn(
|
1062 |
+
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
1063 |
+
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
1064 |
+
"Please refer to the documentation for more information. "
|
1065 |
+
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
|
1066 |
+
UserWarning,
|
1067 |
+
)
|
1068 |
+
|
1069 |
+
if input_ids_seq_length >= generation_config.max_length:
|
1070 |
+
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
1071 |
+
logger.warning(
|
1072 |
+
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
1073 |
+
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
1074 |
+
" increasing `max_new_tokens`."
|
1075 |
+
)
|
1076 |
+
|
1077 |
+
# 2. Set generation parameters if not already defined
|
1078 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
1079 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
1080 |
+
|
1081 |
+
logits_processor = self._get_logits_processor(
|
1082 |
+
generation_config=generation_config,
|
1083 |
+
input_ids_seq_length=input_ids_seq_length,
|
1084 |
+
encoder_input_ids=input_ids,
|
1085 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
1086 |
+
logits_processor=logits_processor,
|
1087 |
+
)
|
1088 |
+
|
1089 |
+
stopping_criteria = self._get_stopping_criteria(
|
1090 |
+
generation_config=generation_config, stopping_criteria=stopping_criteria
|
1091 |
+
)
|
1092 |
+
logits_warper = self._get_logits_warper(generation_config)
|
1093 |
+
|
1094 |
+
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
1095 |
+
scores = None
|
1096 |
+
while True:
|
1097 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
1098 |
+
# forward pass to get next token
|
1099 |
+
outputs = self(
|
1100 |
+
**model_inputs,
|
1101 |
+
return_dict=True,
|
1102 |
+
output_attentions=False,
|
1103 |
+
output_hidden_states=False,
|
1104 |
+
)
|
1105 |
+
|
1106 |
+
next_token_logits = outputs.logits[:, -1, :]
|
1107 |
+
|
1108 |
+
# pre-process distribution
|
1109 |
+
next_token_scores = logits_processor(input_ids, next_token_logits)
|
1110 |
+
next_token_scores = logits_warper(input_ids, next_token_scores)
|
1111 |
+
|
1112 |
+
# sample
|
1113 |
+
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
1114 |
+
if generation_config.do_sample:
|
1115 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
1116 |
+
else:
|
1117 |
+
next_tokens = torch.argmax(probs, dim=-1)
|
1118 |
+
# update generated ids, model inputs, and length for next step
|
1119 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
1120 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
1121 |
+
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
1122 |
+
)
|
1123 |
+
unfinished_sequences = unfinished_sequences.mul(
|
1124 |
+
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
|
1125 |
+
)
|
1126 |
+
if return_past_key_values:
|
1127 |
+
yield input_ids, outputs.past_key_values
|
1128 |
+
else:
|
1129 |
+
yield input_ids
|
1130 |
+
# stop when each sentence is finished, or if we exceed the maximum length
|
1131 |
+
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
1132 |
+
break
|
1133 |
+
|
1134 |
|
1135 |
class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
1136 |
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
|
|
|
1139 |
self.num_labels = config.num_labels
|
1140 |
self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
|
1141 |
|
1142 |
+
self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=torch.half)
|
1143 |
if config.classifier_dropout is not None:
|
1144 |
self.dropout = nn.Dropout(config.classifier_dropout)
|
1145 |
else:
|
|
|
1156 |
inputs_embeds: Optional[torch.LongTensor] = None,
|
1157 |
labels: Optional[torch.LongTensor] = None,
|
1158 |
use_cache: Optional[bool] = None,
|
|
|
1159 |
output_hidden_states: Optional[bool] = None,
|
1160 |
return_dict: Optional[bool] = None,
|
1161 |
) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
|
|
|
1169 |
past_key_values=past_key_values,
|
1170 |
inputs_embeds=inputs_embeds,
|
1171 |
use_cache=use_cache,
|
|
|
1172 |
output_hidden_states=output_hidden_states,
|
1173 |
return_dict=return_dict,
|
1174 |
)
|
tokenization_chatglm.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
import regex as re
|
2 |
import base64
|
3 |
import os
|
|
|
4 |
import tiktoken
|
5 |
-
from
|
|
|
6 |
from transformers import PreTrainedTokenizer
|
7 |
-
from transformers.utils import PaddingStrategy
|
8 |
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
9 |
|
10 |
|
@@ -15,13 +17,16 @@ class ChatGLM4Tokenizer(PreTrainedTokenizer):
|
|
15 |
def __init__(
|
16 |
self,
|
17 |
vocab_file,
|
|
|
18 |
clean_up_tokenization_spaces=False,
|
|
|
19 |
**kwargs
|
20 |
):
|
21 |
self.name = "GLM4Tokenizer"
|
22 |
self.vocab_file = vocab_file
|
23 |
pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
24 |
self.pat_str = re.compile(pat_str)
|
|
|
25 |
|
26 |
mergeable_ranks = {}
|
27 |
with open(vocab_file) as f:
|
@@ -43,6 +48,7 @@ class ChatGLM4Tokenizer(PreTrainedTokenizer):
|
|
43 |
self.n_words = len(self.decoder)
|
44 |
|
45 |
super().__init__(
|
|
|
46 |
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
47 |
**kwargs
|
48 |
)
|
@@ -57,22 +63,22 @@ class ChatGLM4Tokenizer(PreTrainedTokenizer):
|
|
57 |
vocab.update(self.added_tokens_encoder)
|
58 |
return vocab
|
59 |
|
60 |
-
def convert_tokens_to_string(self, tokens: List[Union[bytes, str
|
61 |
"""
|
62 |
Converts a sequence of tokens in a single string.
|
63 |
"""
|
64 |
text = ""
|
65 |
temp = b""
|
66 |
for t in tokens:
|
67 |
-
if isinstance(t, int):
|
68 |
-
t = chr(t)
|
69 |
if isinstance(t, str):
|
70 |
if temp:
|
71 |
text += temp.decode("utf-8", errors="replace")
|
|
|
|
|
72 |
elif isinstance(t, bytes):
|
73 |
temp += t
|
74 |
else:
|
75 |
-
raise TypeError("token should only be of type
|
76 |
if temp:
|
77 |
text += temp.decode("utf-8", errors="replace")
|
78 |
return text
|
@@ -135,6 +141,99 @@ class ChatGLM4Tokenizer(PreTrainedTokenizer):
|
|
135 |
else:
|
136 |
return str(f"<|{role}|>{metadata}\n{message}")
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
def build_inputs_with_special_tokens(
|
139 |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
140 |
) -> List[int]:
|
@@ -164,7 +263,6 @@ class ChatGLM4Tokenizer(PreTrainedTokenizer):
|
|
164 |
self,
|
165 |
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
166 |
max_length: Optional[int] = None,
|
167 |
-
padding_side: str = "left",
|
168 |
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
169 |
pad_to_multiple_of: Optional[int] = None,
|
170 |
return_attention_mask: Optional[bool] = None,
|
@@ -193,6 +291,7 @@ class ChatGLM4Tokenizer(PreTrainedTokenizer):
|
|
193 |
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
194 |
"""
|
195 |
# Load from model defaults
|
|
|
196 |
|
197 |
required_input = encoded_inputs[self.model_input_names[0]]
|
198 |
seq_length = len(required_input)
|
@@ -221,4 +320,4 @@ class ChatGLM4Tokenizer(PreTrainedTokenizer):
|
|
221 |
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
|
222 |
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
223 |
|
224 |
-
return encoded_inputs
|
|
|
1 |
import regex as re
|
2 |
import base64
|
3 |
import os
|
4 |
+
import json
|
5 |
import tiktoken
|
6 |
+
from torch import TensorType
|
7 |
+
from typing import List, Optional, Union, Dict, Any
|
8 |
from transformers import PreTrainedTokenizer
|
9 |
+
from transformers.utils import logging, PaddingStrategy
|
10 |
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
11 |
|
12 |
|
|
|
17 |
def __init__(
|
18 |
self,
|
19 |
vocab_file,
|
20 |
+
padding_side="left",
|
21 |
clean_up_tokenization_spaces=False,
|
22 |
+
encode_special_tokens=False,
|
23 |
**kwargs
|
24 |
):
|
25 |
self.name = "GLM4Tokenizer"
|
26 |
self.vocab_file = vocab_file
|
27 |
pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
28 |
self.pat_str = re.compile(pat_str)
|
29 |
+
self.encode_special_tokens = encode_special_tokens
|
30 |
|
31 |
mergeable_ranks = {}
|
32 |
with open(vocab_file) as f:
|
|
|
48 |
self.n_words = len(self.decoder)
|
49 |
|
50 |
super().__init__(
|
51 |
+
padding_side=padding_side,
|
52 |
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
53 |
**kwargs
|
54 |
)
|
|
|
63 |
vocab.update(self.added_tokens_encoder)
|
64 |
return vocab
|
65 |
|
66 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
67 |
"""
|
68 |
Converts a sequence of tokens in a single string.
|
69 |
"""
|
70 |
text = ""
|
71 |
temp = b""
|
72 |
for t in tokens:
|
|
|
|
|
73 |
if isinstance(t, str):
|
74 |
if temp:
|
75 |
text += temp.decode("utf-8", errors="replace")
|
76 |
+
temp = b""
|
77 |
+
text += t
|
78 |
elif isinstance(t, bytes):
|
79 |
temp += t
|
80 |
else:
|
81 |
+
raise TypeError("token should only be of type types or str")
|
82 |
if temp:
|
83 |
text += temp.decode("utf-8", errors="replace")
|
84 |
return text
|
|
|
141 |
else:
|
142 |
return str(f"<|{role}|>{metadata}\n{message}")
|
143 |
|
144 |
+
def apply_chat_template(
|
145 |
+
self,
|
146 |
+
conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]], "Conversation"],
|
147 |
+
add_generation_prompt: bool = False,
|
148 |
+
tokenize: bool = True,
|
149 |
+
padding: bool = False,
|
150 |
+
truncation: bool = False,
|
151 |
+
max_length: Optional[int] = None,
|
152 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
153 |
+
return_dict: bool = False,
|
154 |
+
tokenizer_kwargs: Optional[Dict[str, Any]] = None,
|
155 |
+
add_special_tokens: bool = True,
|
156 |
+
**kwargs,
|
157 |
+
) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]:
|
158 |
+
|
159 |
+
if return_dict and not tokenize:
|
160 |
+
raise ValueError(
|
161 |
+
"`return_dict=True` is incompatible with `tokenize=False`, because there is no dict "
|
162 |
+
"of tokenizer outputs to return."
|
163 |
+
)
|
164 |
+
|
165 |
+
def handle_single_conversation(conversation):
|
166 |
+
input_ids = self.get_prefix_tokens() if add_special_tokens else []
|
167 |
+
input_message = "[gMASK]<sop>" if add_special_tokens else ""
|
168 |
+
for item in conversation:
|
169 |
+
if item.get("tools"):
|
170 |
+
tools = item["tools"]
|
171 |
+
content = "你是一个名为 GLM-4 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,你的任务是针对用户的问题和要求提供适当的答复和支持。"
|
172 |
+
for tool in tools:
|
173 |
+
if tool["type"] == "function":
|
174 |
+
function = tool["function"]
|
175 |
+
content += f"\n\n## {function['name']}\n\n{json.dumps(function, ensure_ascii=False, indent=4)}"
|
176 |
+
content += "\n在调用上述函数时,请使用 Json 格式表示调用的参数。"
|
177 |
+
elif tool["type"] == "python":
|
178 |
+
content += "\n\n## python\n\n当你向 `python` 发送包含 Python 代码的消息时,该代码将会在一个有状态的 Jupyter notebook 环境中执行。\n`python` 返回代码执行的输出,或在执行 60 秒后返回超时。\n`/mnt/data` 将会持久化存储你的文件。在此会话中,`python` 无法访问互联网。不要使用 `python` 进行任何网络请求或者在线 API 调用,这些在线内容的访问将不会成功。"
|
179 |
+
elif tool["type"] == "simple_browser":
|
180 |
+
content += "\n\n## simple_browser\n\n你可以使用 `simple_browser` 工具。该工具支持以下函数:\n`search(query: str, recency_days: int)`:使用搜索引擎进行查询并显示结果,可以使用 `recency_days` 参数控制搜索内容的时效性。\n`mclick(ids: list[int])`:获取一系列指定 id 的页面内容。每次调用时,须选择3-10个页面。选择多个角度的页面,同时尽可能选择可信任的信息来源。考虑到部分页面是无法加载的,你也可以多打开一些可能有用的页面而不用担心内容过多。\n`open_url(url: str)`:打开指定的 URL。\n\n使用 `【{引用 id}†{引用文本}】` 来引用内容。\n\n操作步骤:1. 使用 `search` 来获得信息列表; 2. 使用 `mclick` 来获取指定 ID 页面的内容; 3. 根据获得的内容进行回复。在回复中应当引用信息来源。\n 如果用户提供了 URL,也可以用 `open_url` 直接打开页面。\n如果初次搜索结果没有找到合适的信息,也可以再次使用 `search` 进行搜索。"
|
181 |
+
elif tool["type"] == "cogview":
|
182 |
+
content += "\n\n## cogview\n\n如果用户的请求中包含了对图像的描述,你可以使用 `cogview` 来生成图像并展示给用户。你需要向 `cogview` 发送图像描述,规则:\n- 发送给 `cogview` 的消息必须使用英语。用户的中文描述必须完全翻译为英语。\n- 应当尽可能详细地描述图像生成的需求,需求描述约 100 英文单词。\n- 保持用户原始描述的意图。不要虚构内容或者没见过的人物。\n- 如无特殊说明,所在地为中国,持有中国立场并遵循中国社会主义价值观。"
|
183 |
+
else:
|
184 |
+
raise NotImplementedError(f"Unknown tool type {tool['type']}")
|
185 |
+
input = self.build_single_message("system", "", content, tokenize=tokenize)
|
186 |
+
if tokenize:
|
187 |
+
input_ids.extend(input)
|
188 |
+
else:
|
189 |
+
input_message += input
|
190 |
+
if item["content"]:
|
191 |
+
input = self.build_single_message(
|
192 |
+
item["role"],
|
193 |
+
item.get("metadata", ""),
|
194 |
+
item["content"],
|
195 |
+
tokenize=tokenize
|
196 |
+
)
|
197 |
+
if tokenize:
|
198 |
+
input_ids.extend(input)
|
199 |
+
else:
|
200 |
+
input_message += input
|
201 |
+
if add_generation_prompt:
|
202 |
+
if tokenize:
|
203 |
+
input_ids.extend([self.convert_tokens_to_ids("<|assistant|>")])
|
204 |
+
else:
|
205 |
+
input_message += "<|assistant|>"
|
206 |
+
|
207 |
+
return input_ids if tokenize else input_message
|
208 |
+
|
209 |
+
# Main logic to handle different conversation formats
|
210 |
+
if isinstance(conversation, list) and all(isinstance(i, dict) for i in conversation):
|
211 |
+
result = handle_single_conversation(conversation)
|
212 |
+
elif isinstance(conversation, list) and all(isinstance(i, list) for i in conversation):
|
213 |
+
result = [handle_single_conversation(c) for c in conversation]
|
214 |
+
elif hasattr(conversation, "messages"):
|
215 |
+
result = handle_single_conversation(conversation.messages)
|
216 |
+
else:
|
217 |
+
raise ValueError("Invalid conversation format")
|
218 |
+
|
219 |
+
if tokenize:
|
220 |
+
output = self.batch_encode_plus(
|
221 |
+
[result] if isinstance(result[0], int) else result,
|
222 |
+
padding=padding,
|
223 |
+
truncation=truncation,
|
224 |
+
max_length=max_length,
|
225 |
+
return_tensors=return_tensors,
|
226 |
+
is_split_into_words=True,
|
227 |
+
add_special_tokens=False
|
228 |
+
)
|
229 |
+
if return_dict:
|
230 |
+
return output
|
231 |
+
else:
|
232 |
+
return output["input_ids"]
|
233 |
+
else:
|
234 |
+
return result
|
235 |
+
|
236 |
+
|
237 |
def build_inputs_with_special_tokens(
|
238 |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
239 |
) -> List[int]:
|
|
|
263 |
self,
|
264 |
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
265 |
max_length: Optional[int] = None,
|
|
|
266 |
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
267 |
pad_to_multiple_of: Optional[int] = None,
|
268 |
return_attention_mask: Optional[bool] = None,
|
|
|
291 |
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
292 |
"""
|
293 |
# Load from model defaults
|
294 |
+
assert self.padding_side == "left"
|
295 |
|
296 |
required_input = encoded_inputs[self.model_input_names[0]]
|
297 |
seq_length = len(required_input)
|
|
|
320 |
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
|
321 |
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
322 |
|
323 |
+
return encoded_inputs
|
tokenizer_config.json
CHANGED
@@ -123,7 +123,6 @@
|
|
123 |
"<|user|>", "<|assistant|>", "<|observation|>", "<|begin_of_image|>", "<|end_of_image|>",
|
124 |
"<|begin_of_video|>", "<|end_of_video|>"],
|
125 |
"clean_up_tokenization_spaces": false,
|
126 |
-
"chat_template": "[gMASK]<sop>{% for item in messages %}{% if item['tools'] is defined %}<|system|>\n你是一个名为 ChatGLM 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,你的任务是针对用户的问题和要求提供适当的答复和支持。\n\n# 可用工具{% set tools = item['tools'] %}{% for tool in tools %}{% if tool['type'] == 'function' %}\n\n## {{ tool['function']['name'] }}\n\n{{ tool['function'] | tojson(indent=4) }}\n在调用上述函数时,请使用 Json 格式表示调用的参数。{% elif tool['type'] == 'python' %}\n\n## python\n\n当你向 `python` 发送包含 Python 代码的消息时,该代码将会在一个有状态的 Jupyter notebook 环境中执行。\n`python` 返回代码执行的输出,或在执行 60 秒后返回超时。\n`/mnt/data` 将会持久化存储你的文件。在此会话中,`python` 无法访问互联网。不要使用 `python` 进行任何网络请求或者在线 API 调用,这些在线内容的访问将不会成功。{% elif tool['type'] == 'simple_browser' %}\n\n## simple_browser\n\n你可以使用 `simple_browser` 工具。该工具支持以下函数:\n`search(query: str, recency_days: int)`:使用搜索引擎进行查询并显示结果,可以使用 `recency_days` 参数控制搜索内容的时效性。\n`mclick(ids: list[int])`:获取一系列指定 id 的页面内容。每次调用时,须选择3-10个页面。选择多个角度的页面,同时尽可能选择可信任的信息来源。考虑到部分页面是无法加载的,你也可以多打开一些可能有用的页面而不用担心内容过多。\n`open_url(url: str)`:打开指定的 URL。\n\n使用 `【{引用 id}†{引用文本}】` 来引用内容。\n\n操作步骤:1. 使用 `search` 来获得信息列表; 2. 使用 `mclick` 来获取指定 ID 页面的内容; 3. 根据获得的内容进行回复。在回复中应当引用信息来源。\n 如果用户提供了 URL,也可以用 `open_url` 直接打开页面。\n如果初次搜索结果没有找到合适的信息,也可以再次使用 `search` 进行搜索。{% elif tool['type'] == 'cogview' %}\n\n## cogview\n\n如果用户的请求中包含了对图像的描述,你可以使用 `cogview` 来生成图像并展示给用户。你需要向 `cogview` 发送图像描述,规则:\n- 发送给 `cogview` 的消息必须使用英语。用户的中文描述必须完全翻译为英语。\n- 应当尽可能详细地描述图像生成的需求,需求描述约 100 英文单词。\n- 保持用户原始描述的意图。不要虚构内容或者没见过的人物。\n- 如无特殊说明,所在地为中国,持有中国立场并遵循中国社会主义价值观。{% endif %}{% endfor %}{% endif %}{% if item['content'] %}<|{{ item['role'] }}|>{{ item['metadata'] }}\n{{ item['content'] }}{% endif %}{% endfor %}{% if add_generation_prompt %}<|assistant|>{% endif %}",
|
127 |
"do_lower_case": false,
|
128 |
"eos_token": "<|endoftext|>",
|
129 |
"pad_token": "<|endoftext|>",
|
|
|
123 |
"<|user|>", "<|assistant|>", "<|observation|>", "<|begin_of_image|>", "<|end_of_image|>",
|
124 |
"<|begin_of_video|>", "<|end_of_video|>"],
|
125 |
"clean_up_tokenization_spaces": false,
|
|
|
126 |
"do_lower_case": false,
|
127 |
"eos_token": "<|endoftext|>",
|
128 |
"pad_token": "<|endoftext|>",
|