import regex as re import base64 import os import tiktoken from typing import List, Optional, Union, Dict from transformers import PreTrainedTokenizer from transformers.utils import PaddingStrategy from transformers.tokenization_utils_base import EncodedInput, BatchEncoding class ChatGLM4Tokenizer(PreTrainedTokenizer): vocab_files_names = {"vocab_file": "tokenizer.model"} model_input_names = ["input_ids", "attention_mask", "position_ids"] def __init__( self, vocab_file, clean_up_tokenization_spaces=False, **kwargs ): self.name = "GLM4Tokenizer" self.vocab_file = vocab_file pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" self.pat_str = re.compile(pat_str) mergeable_ranks = {} with open(vocab_file) as f: for line in f: token, rank = line.strip().split() rank = int(rank) token = base64.b64decode(token) mergeable_ranks[token] = rank self.mergeable_ranks = mergeable_ranks self.tokenizer = tiktoken.Encoding( name="my_tokenizer", pat_str=pat_str, mergeable_ranks=mergeable_ranks, special_tokens={} ) self.decoder = {rank: token for token, rank in mergeable_ranks.items()} self.n_words = len(self.decoder) super().__init__( clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs ) @property def vocab_size(self): return self.n_words def get_vocab(self): """ Returns vocab as a dict """ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def convert_tokens_to_string(self, tokens: List[Union[bytes, str, int]]) -> str: """ Converts a sequence of tokens in a single string. """ text = "" temp = b"" for t in tokens: if isinstance(t, int): t = chr(t) if isinstance(t, str): if temp: text += temp.decode("utf-8", errors="replace") elif isinstance(t, bytes): temp += t else: raise TypeError("token should only be of type int, bytes or str") if temp: text += temp.decode("utf-8", errors="replace") return text def _tokenize(self, text, **kwargs): tokens = [] ids = self.tokenizer.encode(text) for t in ids: tokens.append(self.decoder[t]) return tokens def _convert_token_to_id(self, token): """ Converts a token (str) in an id using the vocab. """ return self.mergeable_ranks[token] def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, "") def save_vocabulary(self, save_directory, filename_prefix=None): """ Save the vocabulary and special tokens file to a directory. Args: save_directory (`str`): The directory in which to save the vocabulary. filename_prefix (`str`, *optional*): An optional prefix to add to the named of the saved files. Returns: `Tuple(str)`: Paths to the files saved. """ if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, self.vocab_files_names["vocab_file"] ) else: vocab_file = save_directory with open(self.vocab_file, 'rb') as fin: proto_str = fin.read() with open(vocab_file, "wb") as writer: writer.write(proto_str) return (vocab_file,) def get_prefix_tokens(self): prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("")] return prefix_tokens def build_single_message(self, role, metadata, message, tokenize=True): assert role in ["system", "user", "assistant", "observation"], role if tokenize: role_tokens = [self.convert_tokens_to_ids(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n", disallowed_special=()) message_tokens = self.tokenizer.encode(message, disallowed_special=()) tokens = role_tokens + message_tokens return tokens else: return str(f"<|{role}|>{metadata}\n{message}") def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ prefix_tokens = self.get_prefix_tokens() token_ids_0 = prefix_tokens + token_ids_0 if token_ids_1 is not None: token_ids_0 = token_ids_0 + token_ids_1 + [self.convert_tokens_to_ids("")] return token_ids_0 def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_side: str = "left", padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults required_input = encoded_inputs[self.model_input_names[0]] seq_length = len(required_input) if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * seq_length if "position_ids" not in encoded_inputs: encoded_inputs["position_ids"] = list(range(seq_length)) if needs_to_be_padded: difference = max_length - len(required_input) if "attention_mask" in encoded_inputs: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "position_ids" in encoded_inputs: encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"] encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input return encoded_inputs