--- license: other license_name: glm-4 license_link: https://huggingface.co/THUDM/glm-4v-9b/blob/main/LICENSE language: - zh - en tags: - glm - chatglm - thudm inference: false --- # glm-4v-9b GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。 在语义、数学、推理、代码和知识等多方面的数据集测评中,GLM-4-9B 及其人类偏好对齐的版本 GLM-4-9B-Chat 均表现出较高的性能。 除了能进行多轮对话,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K 上下文)等高级功能。 本代模型增加了多语言支持,支持包括日语,韩语,德语在内的 26 种语言。我们还推出了支持 1M 上下文长度(约 200 万中文字符)的模型。 本仓库是 GLM-4-9B 的多模态开源版本 GLM-4V-9B 模型。 ## 运行模型 ```python import torch from PIL import Image from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4v-9b", trust_remote_code=True) query = '描述这张图片' image = Image.open("your image").convert('RGB') inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": "描述这张图片"}], add_generation_prompt=True, tokenize=True, return_tensors="pt", return_dict=True) # chat mode inputs = inputs.to(device) model = AutoModelForCausalLM.from_pretrained( "THUDM/glm-4v-9b", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True ).to(device).eval() gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1} with torch.no_grad(): outputs = model.generate(**inputs, **gen_kwargs) outputs = outputs[:, inputs['input_ids'].shape[1]:] print(tokenizer.decode(outputs[0])) ``` ## 协议 GLM-4 模型的权重的使用则需要遵循 [LICENSE](LICENSE)。 Rhe use of the GLM-4 model weights needs to comply with the [LICENSE](LICENSE). ## 引用 如果你觉得我们的工作有帮助的话,请考虑引用下列论文。 ``` @article{zeng2022glm, title={Glm-130b: An open bilingual pre-trained model}, author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others}, journal={arXiv preprint arXiv:2210.02414}, year={2022} } ``` ``` @inproceedings{du2022glm, title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling}, author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, pages={320--335}, year={2022} } ```