--- license: apache-2.0 datasets: - TIGER-Lab/MMEB-train language: - en base_model: - llava-hf/llava-v1.6-mistral-7b-hf library_name: transformers --- A new checkpoint trained using [llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) with an enhanced training setup (LoRA tuning, batch size of 2048, maximum sub-dataset size of 100k). This model has shown significantly improved performance on MMEB & Flickr30K compared to the previous Phi-3.5-based model. This repo contains the code and data for [VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks](https://arxiv.org/abs/2410.05160). In this paper, we focus on building a unified multimodal embedding model suitable for a wide range of tasks. Our approach is based on transforming an existing, well-trained Vision-Language Model (VLM) into an embedding model. The core idea is to append an [EOS] token at the end of the input sequence, which serves as the representation for the combined multimodal inputs. ## Github - [Github](https://github.com/TIGER-AI-Lab/VLM2Vec) ## Data Our model is being trained on MMEB-train and evaluated on MMEB-eval with contrastive learning. We only use in-batch negatives for training. Our results on 36 evaluation datasets are: ### Train/Eval Data - Train data: https://huggingface.co/datasets/TIGER-Lab/MMEB-train - Eval data: https://huggingface.co/datasets/TIGER-Lab/MMEB-eval ## Experimental Results VLM2Vec-LlaVa-Next could outperform the baselines and other version of VLM2Vec by a large margin. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64778fb8168cb428e00f69b0/IaKuKe5ps_bvDTf98C0rt.png) ## How to use VLM2Vec-LlaVa-Next First you can clone our github ```bash git clone https://github.com/TIGER-AI-Lab/VLM2Vec.git ``` Then you can enter the directory to run the following command. from src.model import MMEBModel from src.arguments import ModelArguments from src.utils import load_processor import torch from transformers import HfArgumentParser, AutoProcessor from PIL import Image import numpy as np model_args = ModelArguments( model_name='TIGER-Lab/VLM2Vec-Full', pooling='last', normalize=True, model_backbone='llava') model = MMEBModel.load(model_args) model.eval() model = model.to('cuda', dtype=torch.bfloat16) processor = load_processor(model_args) # Image + Text -> Text inputs = processor(' Represent the given image with the following question: What is in the image', [Image.open('figures/example.jpg')]) inputs = {key: value.to('cuda') for key, value in inputs.items()} qry_output = model(qry=inputs)["qry_reps"] string = 'A cat and a dog' inputs = processor(string) inputs = {key: value.to('cuda') for key, value in inputs.items()} tgt_output = model(tgt=inputs)["tgt_reps"] print(string, '=', model.compute_similarity(qry_output, tgt_output)) ## A cat and a dog = tensor([[0.2969]], device='cuda:0', dtype=torch.bfloat16) string = 'A cat and a tiger' inputs = processor(string) inputs = {key: value.to('cuda') for key, value in inputs.items()} tgt_output = model(tgt=inputs)["tgt_reps"] print(string, '=', model.compute_similarity(qry_output, tgt_output)) ## A cat and a tiger = tensor([[0.2080]], device='cuda:0', dtype=torch.bfloat16) # Text -> Image inputs = processor('Find me an everyday image that matches the given caption: A cat and a dog.',) inputs = {key: value.to('cuda') for key, value in inputs.items()} qry_output = model(qry=inputs)["qry_reps"] string = '<|image_1|> Represent the given image.' inputs = processor(string, [Image.open('figures/example.jpg')]) inputs = {key: value.to('cuda') for key, value in inputs.items()} tgt_output = model(tgt=inputs)["tgt_reps"] print(string, '=', model.compute_similarity(qry_output, tgt_output)) ## <|image_1|> Represent the given image. = tensor([[0.3105]], device='cuda:0', dtype=torch.bfloat16) inputs = processor('Find me an everyday image that matches the given caption: A cat and a tiger.',) inputs = {key: value.to('cuda') for key, value in inputs.items()} qry_output = model(qry=inputs)["qry_reps"] string = '<|image_1|> Represent the given image.' inputs = processor(string, [Image.open('figures/example.jpg')]) inputs = {key: value.to('cuda') for key, value in inputs.items()} tgt_output = model(tgt=inputs)["tgt_reps"] print(string, '=', model.compute_similarity(qry_output, tgt_output)) ## <|image_1|> Represent the given image. = tensor([[0.2158]], device='cuda:0', dtype=torch.bfloat16) ``` ## Citation ``` @article{jiang2024vlm2vec, title={VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks}, author={Jiang, Ziyan and Meng, Rui and Yang, Xinyi and Yavuz, Semih and Zhou, Yingbo and Chen, Wenhu}, journal={arXiv preprint arXiv:2410.05160}, year={2024} }