File size: 10,305 Bytes
840246d
 
 
f2ea74f
840246d
 
 
f2ea74f
840246d
 
a8bda09
 
06cc836
45a2abb
a8bda09
06cc836
e6dc520
06cc836
676da5c
90867ec
41cd5c9
f5e7fc3
41cd5c9
4dcab83
1d7f958
41cd5c9
06cc836
3e4da21
 
 
0c1ac5e
e6dc520
d6714bc
9612d1b
0c1ac5e
3e4da21
0c1ac5e
 
 
 
e6a8d7b
3e4da21
e6dc520
3e4da21
e6dc520
e6a8d7b
 
 
 
9210115
 
e6dc520
 
9210115
 
 
 
 
 
 
 
 
 
 
 
 
7dba304
 
9210115
835f205
 
9210115
daffd51
e6dc520
9210115
0c1ac5e
 
 
4be6147
e6dc520
49b2f40
 
0c1ac5e
 
 
4be6147
e6dc520
f02e0ae
 
b289481
 
 
0776a93
4be6147
0776a93
 
56fae9f
0776a93
b289481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ff308
b289481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6dc520
2679fe5
9cab7d3
0776a93
4be6147
 
0776a93
 
b289481
 
 
 
 
 
 
 
 
 
0776a93
b289481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9453e50
 
d4ff308
 
 
4bd8727
9453e50
 
b289481
0c1ac5e
 
e6dc520
0c1ac5e
 
e6dc520
0c1ac5e
 
3985bc7
e6dc520
 
3985bc7
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---
license: apache-2.0
datasets:
- TIGER-Lab/VideoFeedback
language:
- en
metrics:
- accuracy/spcc
library_name: transformers
pipeline_tag: visual-question-answering
---


[📃Paper](https://arxiv.org/abs/2406.15252) | [🌐Website](https://tiger-ai-lab.github.io/VideoScore/) | [💻Github](https://github.com/TIGER-AI-Lab/VideoScore) | [🛢️Datasets](https://huggingface.co/datasets/TIGER-Lab/VideoFeedback) | [🤗Model (VideoScore)](https://huggingface.co/TIGER-Lab/VideoScore) | [🤗Model (VideoScore-anno-only)](https://huggingface.co/TIGER-Lab/VideoScore-anno-only) | [🤗Model (VideoScore-v1.1)](https://huggingface.co/TIGER-Lab/VideoScore-v1.1)| [🤗Model (VideoScore-Qwen2-VL)](https://huggingface.co/TIGER-Lab/VideoScore-Qwen2-VL) | [🤗Demo](https://huggingface.co/spaces/TIGER-Lab/VideoScore) | [📉Wandb (VideoScore)](https://api.wandb.ai/links/xuanhe/ptohlfcx)


![VideoScore](https://tiger-ai-lab.github.io/VideoScore/static/images/teaser.png)


## Introduction

- 🤯🤯Try on the new version [VideoScore-v1.1](https://huggingface.co/TIGER-Lab/VideoScore-v1.1), which is a variant from [VideoScore](https://huggingface.co/TIGER-Lab/VideoScore) with **better performance in "text-to-video alignment" subscore** and the support for **48 frames** in inference now!

- [VideoScore](https://huggingface.co/TIGER-Lab/VideoScore) series is a video quality evaluation model series, taking [Mantis-8B-Idefics2](https://huggingface.co/TIGER-Lab/Mantis-8B-Idefics2) or [Qwen2-VL](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) as base model
and trained on [VideoFeedback](https://huggingface.co/datasets/TIGER-Lab/VideoFeedback),
a large video evaluation dataset with multi-aspect human scores.

- VideoScore can reach 75+ Spearman correlation with humans on VideoFeedback-test, surpassing all the MLLM-prompting methods and feature-based metrics.
VideoScore also beat the best baselines on other three benchmarks EvalCrafter, GenAI-Bench and VBench, showing high alignment with human evaluations.
For the data details of four benchmarks, please refer to [VideoScore-Bench](https://huggingface.co/datasets/TIGER-Lab/VideoScore-Bench).

- **This is the regression version of VideoScore**

## Evaluation Results

We test our video evaluation model series VideoScore on VideoFeedback-test, EvalCrafter, GenAI-Bench and VBench.
For the first two benchmarks, we take Spearman corrleation between model's output and human ratings 
averaged among all the evaluation aspects as indicator. 
For GenAI-Bench and VBench, which include human preference data among two or more videos, 
we employ the model's output to predict preferences and use pairwise accuracy as the performance indicator.

- For the benchmark VideoFeedback-test, We use [VideoScore](https://huggingface.co/TIGER-Lab/VideoScore) trained on the entire VideoFeedback dataset.

- For other three benchmarks GenAI-Bench, VBench and EvalCrafter, We use [VideoScore-anno-only](https://huggingface.co/TIGER-Lab/VideoScore-anno-only) trained on VideoFeedback dataset 
excluding the real videos. 

The evaluation results are shown below: 


| metric            | Final Avg Score | VideoFeedback-test | EvalCrafter | GenAI-Bench | VBench     |
|:-----------------:|:--------------:|:--------------:|:-----------:|:-----------:|:----------:|
| VideoScore (reg) |       **69.6** |           75.7 |    **51.1** |    **78.5** |   **73.0** |
| VideoScore (gen) |           55.6 |       **77.1** |        27.6 |        59.0 |       58.7 |
| Gemini-1.5-Pro    |    <u>39.7</u> |           22.1 |        22.9 |        60.9 |       52.9 |
| Gemini-1.5-Flash  |           39.4 |           20.8 |        17.3 | <u>67.1</u> |       52.3 |
| GPT-4o            |           38.9 |    <u>23.1</u> |        28.7 |        52.0 |       51.7 |
| CLIP-sim          |           31.7 |            8.9 | <u>36.2</u> |        34.2 |       47.4 |
| DINO-sim          |           30.3 |            7.5 |        32.1 |        38.5 |       43.3 |
| SSIM-sim          |           29.5 |           13.4 |        26.9 |        34.1 |       43.5 |
| CLIP-Score        |           28.6 |           -7.2 |        21.7 |        45.0 |       54.9 |
| LLaVA-1.5-7B      |           27.1 |            8.5 |        10.5 |        49.9 |       39.4 |
| LLaVA-1.6-7B      |           23.3 |           -3.1 |        13.2 |        44.5 |       38.7 |
| X-CLIP-Score      |           23.2 |           -1.9 |        13.3 |        41.4 |       40.1 |
| PIQE              |           19.6 |          -10.1 |        -1.2 |        34.5 |<u> 55.1</u>|
| BRISQUE           |           19.0 |          -20.3 |         3.9 |        38.5 |       53.7 |
| Idefics2          |           18.3 |            6.5 |         0.3 |        34.6 |       31.7 |
| MSE-dyn           |           10.6 |           -5.5 |       -17.0 |        28.4 |       36.5 |
| SSIM-dyn          |            9.2 |          -12.9 |       -26.4 |        31.4 |       44.5 |
<!-- | Fuyu              |               - |              - |           - |           - |          - |
| Kosmos-2          |               - |              - |           - |           - |          - |
| CogVLM            |               - |              - |           - |           - |          - |
| OpenFlamingo      |               - |              - |           - |           - |          - | -->

The best in VideoScore series is in bold and the best in baselines is underlined. 
<!-- "-" means the answer of MLLM is meaningless or in wrong format. -->

## Usage
### Installation
```
pip install git+https://github.com/TIGER-AI-Lab/VideoScore.git
# or
# pip install mantis-vl
```

### Inference
```
cd VideoScore/examples
```

```python
import av
import numpy as np
from typing import List
from PIL import Image
import torch
from transformers import AutoProcessor
from mantis.models.idefics2 import Idefics2ForSequenceClassification

def _read_video_pyav(
    frame_paths:List[str], 
    max_frames:int,
):
    frames = []
    container.seek(0)
    start_index = indices[0]
    end_index = indices[-1]
    for i, frame in enumerate(container.decode(video=0)):
        if i > end_index:
            break
        if i >= start_index and i in indices:
            frames.append(frame)
    return np.stack([x.to_ndarray(format="rgb24") for x in frames])

MAX_NUM_FRAMES=16
ROUND_DIGIT=3
REGRESSION_QUERY_PROMPT = """
Suppose you are an expert in judging and evaluating the quality of AI-generated videos,
please watch the following frames of a given video and see the text prompt for generating the video,
then give scores from 5 different dimensions:
(1) visual quality: the quality of the video in terms of clearness, resolution, brightness, and color
(2) temporal consistency, both the consistency of objects or humans and the smoothness of motion or movements
(3) dynamic degree, the degree of dynamic changes
(4) text-to-video alignment, the alignment between the text prompt and the video content
(5) factual consistency, the consistency of the video content with the common-sense and factual knowledge

for each dimension, output a float number from 1.0 to 4.0,
the higher the number is, the better the video performs in that sub-score, 
the lowest 1.0 means Bad, the highest 4.0 means Perfect/Real (the video is like a real video)
Here is an output example:
visual quality: 3.2
temporal consistency: 2.7
dynamic degree: 4.0
text-to-video alignment: 2.3
factual consistency: 1.8

For this video, the text prompt is "{text_prompt}",
all the frames of video are as follows:
"""

model_name="TIGER-Lab/VideoScore"
video_path="video1.mp4"
video_prompt="Near the Elephant Gate village, they approach the haunted house at night. Rajiv feels anxious, but Bhavesh encourages him. As they reach the house, a mysterious sound in the air adds to the suspense."

processor = AutoProcessor.from_pretrained(model_name,torch_dtype=torch.bfloat16)
model = Idefics2ForSequenceClassification.from_pretrained(model_name,torch_dtype=torch.bfloat16).eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# sample uniformly 8 frames from the video
container = av.open(video_path)
total_frames = container.streams.video[0].frames
if total_frames > MAX_NUM_FRAMES:
    indices = np.arange(0, total_frames, total_frames / MAX_NUM_FRAMES).astype(int)
else:
    indices = np.arange(total_frames)

frames = [Image.fromarray(x) for x in _read_video_pyav(container, indices)]
eval_prompt = REGRESSION_QUERY_PROMPT.format(text_prompt=video_prompt)
num_image_token = eval_prompt.count("<image>")
if num_image_token < len(frames):
    eval_prompt += "<image> " * (len(frames) - num_image_token)

flatten_images = []
for x in [frames]:
    if isinstance(x, list):
        flatten_images.extend(x)
    else:
        flatten_images.append(x)
flatten_images = [Image.open(x) if isinstance(x, str) else x for x in flatten_images]
inputs = processor(text=eval_prompt, images=flatten_images, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}

with torch.no_grad():
    outputs = model(**inputs)

logits = outputs.logits
num_aspects = logits.shape[-1]

aspect_scores = []
for i in range(num_aspects):
    aspect_scores.append(round(logits[0, i].item(),ROUND_DIGIT))
print(aspect_scores)

"""
model output on visual quality, temporal consistency, dynamic degree,
text-to-video alignment, factual consistency, respectively

[2.297, 2.469, 2.906, 2.766, 2.516]
"""

```

### Training
see [VideoScore/training](https://github.com/TIGER-AI-Lab/VideoScore/tree/main/training) for details

### Evaluation
see [VideoScore/benchmark](https://github.com/TIGER-AI-Lab/VideoScore/tree/main/benchmark) for details

## Citation
```bibtex
@article{he2024videoscore,
  title = {VideoScore: Building Automatic Metrics to Simulate Fine-grained Human Feedback for Video Generation},
  author = {He, Xuan and Jiang, Dongfu and Zhang, Ge and Ku, Max and Soni, Achint and Siu, Sherman and Chen, Haonan and Chandra, Abhranil and Jiang, Ziyan and Arulraj, Aaran and Wang, Kai and Do, Quy Duc and Ni, Yuansheng and Lyu, Bohan and Narsupalli, Yaswanth and Fan, Rongqi and Lyu, Zhiheng and Lin, Yuchen and Chen, Wenhu},
  journal = {ArXiv},
  year = {2024},
  volume={abs/2406.15252},
  url = {https://arxiv.org/abs/2406.15252},
}
```