|
auto_scale_lr = dict(base_batch_size=96) |
|
custom_hooks = [ |
|
dict(momentum=0.0001, priority='ABOVE_NORMAL', type='EMAHook'), |
|
] |
|
data_preprocessor = dict( |
|
mean=[ |
|
123.675, |
|
116.28, |
|
103.53, |
|
], |
|
num_classes=2, |
|
std=[ |
|
58.395, |
|
57.12, |
|
57.375, |
|
], |
|
to_rgb=True) |
|
dataset_type = 'CustomDataset' |
|
default_hooks = dict( |
|
checkpoint=dict(interval=2, type='CheckpointHook'), |
|
logger=dict(interval=100, type='LoggerHook'), |
|
param_scheduler=dict(type='ParamSchedulerHook'), |
|
sampler_seed=dict(type='DistSamplerSeedHook'), |
|
timer=dict(type='IterTimerHook'), |
|
visualization=dict( |
|
enable=True, |
|
interval=1, |
|
out_dir=None, |
|
type='VisualizationHook', |
|
wait_time=2)) |
|
default_scope = 'mmpretrain' |
|
env_cfg = dict( |
|
cudnn_benchmark=False, |
|
dist_cfg=dict(backend='nccl'), |
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) |
|
launcher = 'none' |
|
load_from = './ConvNeXt_v2-v2_ep90.pth' |
|
log_level = 'INFO' |
|
model = dict( |
|
backbone=dict( |
|
arch='tiny', |
|
drop_path_rate=0.5, |
|
layer_scale_init_value=0.0, |
|
type='ConvNeXt', |
|
use_grn=True), |
|
head=dict( |
|
in_channels=768, |
|
init_cfg=None, |
|
loss=dict(label_smooth_val=0.2, type='LabelSmoothLoss'), |
|
num_classes=2, |
|
type='LinearClsHead'), |
|
init_cfg=dict( |
|
bias=0.0, layer=[ |
|
'Conv2d', |
|
'Linear', |
|
], std=0.02, type='TruncNormal'), |
|
train_cfg=dict(augments=[ |
|
dict(alpha=0.8, type='Mixup'), |
|
dict(alpha=1.0, type='CutMix'), |
|
]), |
|
type='ImageClassifier') |
|
optim_wrapper = dict( |
|
accumulative_counts=3, |
|
clip_grad=None, |
|
loss_scale='dynamic', |
|
optimizer=dict( |
|
betas=( |
|
0.9, |
|
0.999, |
|
), |
|
eps=1e-08, |
|
lr=0.00032, |
|
type='AdamW', |
|
weight_decay=0.05), |
|
paramwise_cfg=dict( |
|
bias_decay_mult=0.0, |
|
custom_keys=dict({ |
|
'.absolute_pos_embed': dict(decay_mult=0.0), |
|
'.relative_position_bias_table': dict(decay_mult=0.0) |
|
}), |
|
flat_decay_mult=0.0, |
|
norm_decay_mult=0.0), |
|
type='AmpOptimWrapper') |
|
param_scheduler = [ |
|
dict( |
|
by_epoch=True, |
|
convert_to_iter_based=True, |
|
end=2, |
|
start_factor=0.001, |
|
type='LinearLR'), |
|
dict(begin=2, by_epoch=True, eta_min=8e-05, type='CosineAnnealingLR'), |
|
] |
|
randomness = dict(deterministic=False, seed=None) |
|
resume = False |
|
test_cfg = dict() |
|
test_dataloader = dict( |
|
batch_size=16, |
|
collate_fn=dict(type='default_collate'), |
|
dataset=dict( |
|
data_root='./testimgs', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
backend='pillow', |
|
interpolation='bicubic', |
|
scale=384, |
|
type='Resize'), |
|
dict(type='PackInputs'), |
|
], |
|
type='CustomDataset'), |
|
num_workers=5, |
|
persistent_workers=True, |
|
pin_memory=True, |
|
sampler=dict(shuffle=False, type='DefaultSampler')) |
|
test_evaluator = dict(topk=(1, ), type='Accuracy') |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(backend='pillow', interpolation='bicubic', scale=384, type='Resize'), |
|
dict(type='PackInputs'), |
|
] |
|
train_cfg = dict(by_epoch=True, max_epochs=120, val_interval=1) |
|
train_dataloader = dict( |
|
batch_size=32, |
|
collate_fn=dict(type='default_collate'), |
|
dataset=dict( |
|
data_root='./procset', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
backend='pillow', |
|
interpolation='bicubic', |
|
scale=384, |
|
type='RandomResizedCrop'), |
|
dict(direction='horizontal', prob=0.5, type='RandomFlip'), |
|
dict(type='PackInputs'), |
|
], |
|
type='CustomDataset'), |
|
num_workers=5, |
|
persistent_workers=True, |
|
pin_memory=True, |
|
sampler=dict(shuffle=True, type='DefaultSampler')) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
backend='pillow', |
|
interpolation='bicubic', |
|
scale=384, |
|
type='RandomResizedCrop'), |
|
dict(direction='horizontal', prob=0.5, type='RandomFlip'), |
|
dict(type='PackInputs'), |
|
] |
|
val_cfg = dict() |
|
val_dataloader = dict( |
|
batch_size=16, |
|
collate_fn=dict(type='default_collate'), |
|
dataset=dict( |
|
data_root='./valset', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
backend='pillow', |
|
interpolation='bicubic', |
|
scale=384, |
|
type='Resize'), |
|
dict(type='PackInputs'), |
|
], |
|
type='CustomDataset'), |
|
num_workers=5, |
|
persistent_workers=True, |
|
pin_memory=True, |
|
sampler=dict(shuffle=False, type='DefaultSampler')) |
|
val_evaluator = dict(topk=(1, ), type='Accuracy') |
|
vis_backends = [ |
|
dict(type='LocalVisBackend'), |
|
] |
|
visualizer = dict( |
|
type='UniversalVisualizer', vis_backends=[ |
|
dict(type='LocalVisBackend'), |
|
]) |
|
work_dir = './work_dirs\\convnext-v2-tiny_32xb32_in1k-384px' |
|
|