File size: 15,742 Bytes
6eaf5f4 dea34a1 6eaf5f4 dea34a1 bc6a4db dea34a1 af33de2 dea34a1 f725526 4cff44e 7df6840 dea34a1 027c451 dea34a1 4e764ec dea34a1 4c1c5a1 dea34a1 a893898 dea34a1 a893898 dea34a1 4e764ec dea34a1 a893898 82a0d43 dea34a1 1c6045b dea34a1 b7814c2 dea34a1 b7814c2 84f3ee6 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 b7814c2 dea34a1 a777709 dea34a1 97fc3b6 b7814c2 97fc3b6 a893898 97fc3b6 d344ef7 97fc3b6 78e44ea b7814c2 97fc3b6 a777709 97fc3b6 78e44ea 97fc3b6 a777709 97fc3b6 dea34a1 f725526 a893898 f725526 a893898 f725526 a893898 dea34a1 bc6a4db af33de2 dea34a1 bc6a4db dea34a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
---
license: creativeml-openrail-m
language:
- en
library_name: diffusers
pipeline_tag: text-to-video
tags:
- AIGC
- text2video
- image2video
- infinite-length
- human
---
<font size=5>**MuseV: Infinite-length and High Fidelity Virtual Human Video Generation with Visual Conditioned Parallel Denoising**</font>
</br>
Zhiqiang Xia <sup>\*</sup>,
Zhaokang Chen<sup>\*</sup>,
Bin Wu<sup>†</sup>,
Chao Li,
Kwok-Wai Hung,
Chao Zhan,
Yingjie He,
Wenjiang Zhou
(<sup>*</sup>Equal Contribution, <sup>†</sup>Corresponding Author, benbinwu@tencent.com)
</br>
Lyra Lab, Tencent Music Entertainment
**[github](https://github.com/TMElyralab/MuseV)** **[huggingface](https://huggingface.co/TMElyralab/MuseV)** **[HuggingfaceSpace](https://huggingface.co/spaces/AnchorFake/MuseVDemo)** **[project](comming soon)** **Technical report (comming soon)**
We have setup **the world simulator vision since March 2023, believing diffusion models can simulate the world**. `MuseV` was a milestone achieved around **July 2023**. Amazed by the progress of Sora, we decided to opensource `MuseV`, hopefully it will benefit the community. Next we will move on to the promising diffusion+transformer scheme.
We will soon release `MuseTalk`, a real-time high quality lip sync model, which can be applied with MuseV as a complete virtual human generation solution. Please stay tuned!
# Overview
`MuseV` is a diffusion-based virtual human video generation framework, which
1. supports **infinite length** generation using a novel **Visual Conditioned Parallel Denoising scheme**.
2. checkpoint available for virtual human video generation trained on human dataset.
3. supports Image2Video, Text2Image2Video, Video2Video.
4. compatible with the **Stable Diffusion ecosystem**, including `base_model`, `lora`, `controlnet`, etc.
5. supports multi reference image technology, including `IPAdapter`, `ReferenceOnly`, `ReferenceNet`, `IPAdapterFaceID`.
6. training codes (comming very soon).
# News
- [03/27/2024] release `MuseV` project and trained model `musev`, `muse_referencenet`, `muse_referencenet_pose`.
## Model
### overview of model structure
![model_structure](data/models/musev_structure.png)
### parallel denoising
![parallel_denoise](data/models/parallel_denoise.png)
## Cases
All frames are generated from text2video model, without any post process.
Bellow Case could be found in `configs/tasks/example.yaml`
### Text/Image2Video
#### Human
<!-- 2 columns, one image, one video -->
<table class="center">
<tr style="font-weight: bolder;text-align:center;">
<td>image</td>
<td>video </td>
<td>prompt</td>
</tr>
<tr>
<td>
<img src=https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/cTQX49v7GT7GA-NEHj5vK.jpeg width="200">
</td>
<td >
<video width="400" controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/U4sHVv_fYVbFHveS7Sw7h.mp4"></video>
</td>
<td>(masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
</td>
</tr>
<tr>
<td>
<img src=https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/SPSgJpptVM4Qm11nqD07C.jpeg width="200">
</td>
<td>
<video width="400" controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/XMya1FCmRs6USzKp9qrAy.mp4"></video>
</td>
<td>
(masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
</td>
</tr>
<tr>
<td>
<img src=https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/l6chBPhUKeOLbnXnX-ewG.jpeg width="200">
</td>
<td>
<video width="400" controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/pPnU6QXgWuWxw5SWZdl8N.mp4"></video>
</td>
<td>
(masterpiece, best quality, highres:1), peaceful beautiful sea scene
</td>
</tr>
<tr>
<td>
<img src=https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/VQMEeGc1wTuiATtQLJjer.jpeg width="200">
</td>
<td>
<video width="400" controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/_9ZQEebUlmSNtXMJKiGPu.mp4"></video>
</td>
<td>
(masterpiece, best quality, highres:1), peaceful beautiful sea scene
</td>
</tr>
<!-- guitar -->
<tr>
<td>
<img src=https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/Fk_eec7vqq4NfAYVPNLI-.jpeg width="200">
</td>
<td>
<video width="400" controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/p0gWRwZTDOrbPf8mZOphG.mp4"></video>
</td>
<td>
(masterpiece, best quality, highres:1), playing guitar
</td>
</tr>
<tr>
<td>
<img src=https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/Zcc5xj1-lA_EPS7gvJu99.jpeg width="200">
</td>
<td>
<video width="400" controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/4mT4KL3q4FzyQQKJfgXVG.mp4"></video>
</td>
<td>
(masterpiece, best quality, highres:1), playing guitar
</td>
</tr>
<tr>
<td>
<img src=https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/iT5OsCpRNnntuS0TH1cG5.jpeg width="200">
</td>
<td>
<video width="400" controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/6RWBw73-oE4rJH808FzIK.mp4">
</td>
<td>
(masterpiece, best quality, highres:1), playing guitar
</td>
</tr>
<tr>
<td>
<img src=https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/Ym582ZF-MbYkRW1sAE5r3.jpeg width="200">
</td>
<td>
<video width="400" controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/lYqpeRcIiK7WEqRe4d8dZ.mp4"></video>
</td>
<td>
(masterpiece, best quality, highres:1), playing guitar
</td>
</tr>
<!-- famous people -->
<tr>
<td>
<img src=https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/JsAjbl4AeYz089kWHjjUJ.jpeg width="200">
</td>
<td>
<video width="400" controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/KCjF9HutBo7el15gm3YV3.mp4"></video>
</td>
<td>
(masterpiece, best quality, highres:1),(1man, solo:1),(beautiful face,
soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
</td>
</tr>
<tr>
<td>
<img src=https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/v-X3Wrkm14YwLGGloNlMK.jpeg width="200">
</td>
<td>
<video width="400" controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/P_Y5jUO1EJ6n3Z4qd1xh1.mp4"></video>
</td>
<td>
(masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
</td>
</tr>
<tr>
<td>
<img src=https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/cNe41NV1OfLF5AmMKD6mi.jpeg width="200">
</td>
<td>
<video width="400" controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/L6mA8uuckRJhzhAJHayJT.mp4"></video>
</td>
<td>
(masterpiece, best quality, highres:1),(1man, solo:1),(beautiful face,
soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
</td>
</tr>
<tr>
<td>
<img src=https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/6iHIaa15eBgop7BsE0Nps.jpeg width="200">
</td>
<td>
<video width="400" controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/foPX3iRk2TzjRl_V52T21.mp4"></video>
</td>
<td>
(masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
</td>
</tr>
<tr>
<td>
<img src=https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/R7rp7t4DPkws0dXRxi0bf.jpeg width="200">
</td>
<td>
<video width="400" controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/tGTSNe9i08pvTMNe6SOBg.mp4"></video>
</td>
<td>
(masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
</td>
</tr>
</table >
#### scene
<table class="center">
<tr style="font-weight: bolder;text-align:center;">
<td>image</td>
<td>video</td>
<td>prompt</td>
</tr>
<tr>
<td>
<img src=https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/EIembLBwySZTBjFZStFr_.jpeg width="200">
</td>
<td>
<video width="400" controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/jfHV6a186BzAu-Tz0ET1o.mp4"></video>
</td>
<td>
(masterpiece, best quality, highres:1), peaceful beautiful waterfall, an
endless waterfall
</td>
</tr>
<tr>
<td>
<img src=https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/u2_mzl5m-Z0nwSYFcTLxs.jpeg width="200">
</td>
<td>
<video width="400" controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/eXrRVejCZs3QaA4-JK6Le.mp4"></video>
</td>
<td>(masterpiece, best quality, highres:1), peaceful beautiful river
</td>
</tr>
<tr>
<td>
<img src=https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/NIHfIi7onyJ5ELetE2f_Z.jpeg width="200">
</td>
<td>
<video width="400" controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/eaZyhukcfaoY7dIGp2cs6.mp4"></video>
</td>
<td>(masterpiece, best quality, highres:1), peaceful beautiful sea scene
</td>
</tr>
</table >
### VideoMiddle2Video
**pose2video**
In duffy case, pose of the vision condition frame is not aligned with of the first frame of control video. `posealign` module can solve it.
<table class="center">
<tr style="font-weight: bolder;text-align:center;">
<td>image</td>
<td>video</td>
<td>prompt</td>
</tr>
<tr>
<td>
<img src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/fX1ND0YqDp1LV0LEh2eFN.png" width="200">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/pe2aQt5FU66tplNZCOZaB.png" width="200">
</td>
<td>
<video width="900" src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/IMPIDjR7-w5A_xc6ZHIzT.mp4" controls preload></video>
</td>
<td>
(masterpiece, best quality, highres:1)
</td>
</tr>
<tr>
<td>
<img src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/FlLWP8IqM_X2K4hXAOPHO.png" width="200">
</td>
<td>
<video width="900" src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/OT22TR7e7Lcoxci9aoDBA.mp4" controls preload></video>
</td>
<td>
(masterpiece, best quality, highres:1)
</td>
</tr>
</table >
### MuseTalk
<table class="center">
<tr style="font-weight: bolder;">
<td>name</td>
<td>video</td>
</tr>
<tr>
<td>
talk
</td>
<td>
<video width="350" src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/wUhNS7j5UQ28eXu4JVQfF.mp4" controls preload></video>
</td>
</tr>
<tr>
<td>
talk
</td>
<td>
<video width="350" src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/bH-j15douHJcZXIEvMIDa.mp4" controls preload></video>
</td>
</tr>
<tr>
<td>
sing
</td>
<td>
<video width="350" src="https://cdn-uploads.huggingface.co/production/uploads/65f9352ed760cfdf5eb80e16/l5ZTbUQ11gK6FUtoaRz4S.mp4" controls preload></video>
</td>
</tr>
</table >
# Quickstart
please refer to [MuseV](https://github.com/TMElyralab/MuseV)
# Acknowledgements
1. MuseV has referred much to [TuneAVideo](https://github.com/showlab/Tune-A-Video), [diffusers](https://github.com/huggingface/diffusers), [Moore-AnimateAnyone](https://github.com/MooreThreads/Moore-AnimateAnyone/tree/master/src/pipelines), [animatediff](https://github.com/guoyww/AnimateDiff), [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter), [AnimateAnyone](https://arxiv.org/abs/2311.17117), [VideoFusion](https://arxiv.org/abs/2303.08320), [insightface](https://github.com/deepinsight/insightface).
2. MuseV has been built on `ucf101` and `webvid` datasets.
Thanks for open-sourcing!
# Limitation
There are still many limitations, including
1. Lack of generalization ability. Some visual condition image perform well, some perform bad. Some t2i pretraied model perform well, some perform bad.
1. Limited types of video generation and limited motion range, partly because of limited types of training data. The released `MuseV` has been trained on approximately 60K human text-video pairs with resolution `512*320`. `MuseV` has greater motion range while lower video quality at lower resolution. `MuseV` tends to generate less motion range with high video quality. Trained on larger, higher resolution, higher quality text-video dataset may make `MuseV` better.
1. Watermarks may appear because of `webvid`. A cleaner dataset withour watermarks may solve this issue.
1. Limited types of long video generation. Visual Conditioned Parallel Denoise can solve accumulated error of video generation, but the current method is only suitable for relatively fixed camera scenes.
1. Undertrained referencenet and IP-Adapter, beacause of limited time and limited resources.
1. Understructured code. `MuseV` supports rich and dynamic features, but with complex and unrefacted codes. It takes time to familiarize.
<!-- # Contribution 暂时不需要组织开源共建 -->
# Citation
```bib
@article{musev,
title={MuseV: Infinite-length and High Fidelity Virtual Human Video Generation with Visual Conditioned Parallel Denoising},
author={Xia, Zhiqiang and Chen, Zhaokang and Wu, Bin and Li, Chao and Hung, Kwok-Wai and Zhan, Chao and He, Yingjie and Zhou, Wenjiang},
journal={arxiv},
year={2024}
}
```
# Disclaimer/License
1. `code`: The code of MuseV is released under the MIT License. There is no limitation for both academic and commercial usage.
1. `model`: The trained model are available for non-commercial research purposes only.
1. `other opensource model`: Other open-source models used must comply with their license, such as `insightface`, `IP-Adapter`, `ft-mse-vae`, etc.
1. The testdata are collected from internet, which are available for non-commercial research purposes only.
1. `AIGC`: This project strives to impact the domain of AI-driven video generation positively. Users are granted the freedom to create videos using this tool, but they are expected to comply with local laws and utilize it responsibly. The developers do not assume any responsibility for potential misuse by users. |