English
LLM
BELLE
File size: 7,933 Bytes
3f70f85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from __future__ import annotations

import configparser
import pathlib
import typing

import torch
import transformers
from torch.nn.utils.rnn import pad_sequence

from .config import BELLE_PARAM, LIB_SO_PATH
from .model import BelleModel
import os


class LyraBelle:
    def __init__(self, model_path, model_name, dtype='fp16', int8_mode=0) -> None:
        self.model_path = model_path
        self.model_name = model_name
        self.dtype = dtype
        if dtype != 'int8':
            int8_mode = 0
        self.int8_mode = int8_mode

        print(f'Loading model and tokenizer from {self.model_path}')
        self.model, self.tokenizer = self.load_model_and_tokenizer()
        print("Got model and tokenizer")

    def load_model_and_tokenizer(self):
        tokenizer = transformers.AutoTokenizer.from_pretrained(self.model_path)

        checkpoint_path = pathlib.Path(self.model_path)
        config_path = checkpoint_path / 'config.ini'

        if config_path.exists():
            # Read model params from config.
            cfg = configparser.ConfigParser()
            cfg.read(config_path)
            model_name = 'belle'
            inference_data_type = self.dtype
            if inference_data_type == None:
                inference_data_type = cfg.get(model_name, "weight_data_type")
            model_args = dict(
                head_num=cfg.getint(model_name, 'head_num'),
                size_per_head=cfg.getint(model_name, "size_per_head"),
                layer_num=cfg.getint(model_name, "num_layer"),
                tensor_para_size=cfg.getint(model_name, "tensor_para_size"),
                vocab_size=cfg.getint(model_name, "vocab_size"),
                start_id=cfg.getint(model_name, "start_id"),
                end_id=cfg.getint(model_name, "end_id"),
                weights_data_type=cfg.get(model_name, "weight_data_type"),
                layernorm_eps=cfg.getfloat(model_name, 'layernorm_eps'),
                inference_data_type=inference_data_type)
        else:
            inference_data_type = self.dtype
            if inference_data_type == None:
                inference_data_type = BELLE_PARAM.weights_data_type
            model_args = dict(head_num=BELLE_PARAM.num_heads,
                              size_per_head=BELLE_PARAM.size_per_head,
                              vocab_size=BELLE_PARAM.vocab_size,
                              start_id=BELLE_PARAM.start_id or tokenizer.bos_token_id,
                              end_id=BELLE_PARAM.end_id or tokenizer.eos_token_id,
                              layer_num=BELLE_PARAM.num_layers,
                              tensor_para_size=BELLE_PARAM.tensor_para_size,
                              weights_data_type=BELLE_PARAM.weights_data_type,
                              inference_data_type=inference_data_type)

        # update common parameters
        model_args.update(dict(
            lib_path=LIB_SO_PATH,
            pipeline_para_size=BELLE_PARAM.pipeline_para_size,
            shared_contexts_ratio=BELLE_PARAM.shared_contexts_ratio,
            int8_mode=self.int8_mode
        ))

        print('[FT][INFO] Load Our FT Highly Optimized BELLE model')
        for k, v in model_args.items():
            print(f' - {k.ljust(25, ".")}: {v}')

        # Check sanity and consistency between the model and tokenizer.
        checklist = ['head_num', 'size_per_head', 'vocab_size', 'layer_num',
                     'tensor_para_size', 'tensor_para_size', 'weights_data_type']
        if None in [model_args[k] for k in checklist]:
            none_params = [p for p in checklist if model_args[p] is None]
            print(f'[FT][WARNING] Found None parameters {none_params}. They must '
                  f'be provided either by config file or CLI arguments.')
        if model_args['start_id'] != tokenizer.bos_token_id:
            print('[FT][WARNING] Given start_id is not matched with the bos token '
                  'id of the pretrained tokenizer.')
        if model_args['end_id'] not in (tokenizer.pad_token_id, tokenizer.eos_token_id):
            print('[FT][WARNING] Given end_id is not matched with neither pad '
                  'token id nor eos token id of the pretrained tokenizer.')

        model = BelleModel(**model_args)
        if not model.load(ckpt_path=os.path.join(self.model_path, self.model_name)):
            print('[FT][WARNING] Skip model loading since no checkpoints are found')

        return model, tokenizer

    def generate(self, prompts: typing.List[str] | str,
                 output_length: int = 512,
                 beam_width: int = 1,
                 top_k: typing.Optional[torch.IntTensor] = 1,
                 top_p: typing.Optional[torch.FloatTensor] = 1.0,
                 beam_search_diversity_rate: typing.Optional[torch.FloatTensor] = 0.0,
                 temperature: typing.Optional[torch.FloatTensor] = 1.0,
                 len_penalty: typing.Optional[torch.FloatTensor] = 0.0,
                 repetition_penalty: typing.Optional[torch.FloatTensor] = 1.0,
                 presence_penalty: typing.Optional[torch.FloatTensor] = None,
                 min_length: typing.Optional[torch.IntTensor] = None,
                 bad_words_list: typing.Optional[torch.IntTensor] = None,
                 do_sample: bool = False,
                 return_output_length: bool = False,
                 return_cum_log_probs: int = 0):
        #
        if isinstance(prompts, str):
            prompts = [prompts, ]

        inputs = ['Human: ' + prompt.strip() +
                  '\n\nAssistant:' for prompt in prompts]
        batch_size = len(inputs)
        ones_int = torch.ones(size=[batch_size], dtype=torch.int32)
        ones_float = torch.ones(size=[batch_size], dtype=torch.float32)

        # we must encode the raw prompt text one by one in order to compute the length of the original text.
        input_token_ids = [self.tokenizer(text, return_tensors="pt").input_ids.int().squeeze() for text in inputs]
        input_lengths = torch.IntTensor([len(ids) for ids in input_token_ids])
        # after got the length of each input text tokens. we can batchfy the input list to a tensor. padding the right.
        input_token_ids = pad_sequence(input_token_ids, batch_first=True, padding_value=self.tokenizer.eos_token_id)

        random_seed = None
        if do_sample:
            random_seed = torch.randint(0, 262144, (batch_size,), dtype=torch.long)

        outputs = self.model(start_ids=input_token_ids,
                             start_lengths=input_lengths,
                             output_len=output_length,
                             beam_width=beam_width,
                             top_k=top_k*ones_int,
                             top_p=top_p*ones_float,
                             beam_search_diversity_rate=beam_search_diversity_rate*ones_float,
                             temperature=temperature*ones_float,
                             len_penalty=len_penalty*ones_float,
                             repetition_penalty=repetition_penalty*ones_float,
                             presence_penalty=presence_penalty,
                             min_length=min_length,
                             random_seed=random_seed,
                             bad_words_list=bad_words_list,
                             return_output_length=return_output_length,
                             return_cum_log_probs=return_cum_log_probs)

        if return_cum_log_probs > 0:
            outputs = outputs[0]  # output_token_ids.

        # Slice the generated token ids of the 1st beam result.
        # output = input tokens + generated tokens.
        output_token_ids = [out[0, length:].cpu()
                            for out, length in zip(outputs, input_lengths)]

        output_texts = self.tokenizer.batch_decode(
            output_token_ids, skip_special_tokens=True)

        return output_texts