English
LLM
BELLE
File size: 39,267 Bytes
3f70f85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
from __future__ import annotations

import os
import pathlib
import typing
from pathlib import Path
from typing import Optional

import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn

str_type_map = {"fp32": torch.float32,
                "fp16": torch.float16, "bf16": torch.bfloat16}


class BaseBelleWeights:
    def __init__(self, head_num, size_per_head, layer_num, vocab_size, max_seq_len, tensor_para_size, pipeline_para_size,
                 weights_data_type: typing.Union[str, np.dtype],
                 inference_data_type: str,
                 has_adapters: bool = False,
                 adapter_inter_size: int = 0,
                 gpt_with_moe: bool = False,
                 has_positional_encoding: bool = True,
                 has_pre_decoder_layernorm: bool = False,
                 has_post_decoder_layernorm: bool = True,
                 int8_mode: int = 0,
                 inter_size: int = 0):
        assert(head_num % tensor_para_size == 0)

        if int8_mode == 1:
            torch_infer_dtype = str_type_map[inference_data_type]
            assert torch_infer_dtype == torch.float16 or torch_infer_dtype == torch.bfloat16, "Weight only quant only supported for infer type fp16 or bf16."
            quant = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix
            self.weight_transpose_calibrate_quantize = lambda x: quant(
                x, torch.int8)
        else:
            assert int8_mode == 0, "Invalid int8 mode for BELLE. Must be 0 or 1"

        self.head_num = head_num
        self.size_per_head = size_per_head
        self.layer_num = layer_num
        self.vocab_size = vocab_size
        self.max_seq_len = max_seq_len
        self.tensor_para_size = tensor_para_size
        self.pipeline_para_size = pipeline_para_size
        self.layers_per_device = layer_num // pipeline_para_size

        self.has_adapters = has_adapters
        self.adapter_inter_size = adapter_inter_size
        self.gpt_with_moe = gpt_with_moe
        self.has_positional_encoding = has_positional_encoding
        self.has_pre_decoder_layernorm = has_pre_decoder_layernorm
        self.has_post_decoder_layernorm = has_post_decoder_layernorm

        local_head_num = head_num // tensor_para_size
        global_head_num = head_num
        local_hidden_units = local_head_num * size_per_head
        global_hidden_units = global_head_num * size_per_head
        local_inter_size = local_hidden_units * 4
        if inter_size != 0:
            assert inter_size % tensor_para_size == 0, f"inter_size({inter_size}) \% tensor_para_size({tensor_para_size}) must be 0"
            local_inter_size = inter_size // tensor_para_size
        local_adapter_inter_size = self.adapter_inter_size // tensor_para_size

        self.local_head_num = local_head_num
        self.global_head_num = global_head_num
        self.local_hidden_units = local_hidden_units
        self.global_hidden_units = global_hidden_units
        self.local_inter_size = local_inter_size

        self.int8_mode = int8_mode
        self.share_embed = False

        if isinstance(weights_data_type, str):
            try:
                weights_data_type = {
                    "fp16": np.float16,
                    "fp32": np.float32,
                    "float16": np.float16,
                    "float32": np.float32,
                }[weights_data_type]
            except KeyError:
                raise ValueError(
                    f"Don't know how to interpret weights_data_type: {weights_data_type}")

        assert weights_data_type in [np.float32, np.float16]
        self.weights_data_type = weights_data_type
        self.inference_data_type = inference_data_type

        self.w = []
        self.int8_w = []
        self.scale = []
        # Transformer blocks
        self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[
            self.inference_data_type])] * layer_num)   # self_layernorm_gamma
        self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[
            self.inference_data_type])] * layer_num)   # self_layernorm_beta
        self.w.extend([torch.zeros(global_hidden_units, local_hidden_units * 3,
                      dtype=str_type_map[self.inference_data_type])] * layer_num)   # self_kernel
        self.w.extend([torch.zeros(local_hidden_units * 3, dtype=str_type_map[self.inference_data_type])]
                      * layer_num)   # self_bias
        self.w.extend([torch.zeros(local_hidden_units, global_hidden_units, dtype=str_type_map[
            self.inference_data_type])] * layer_num)   # self_output_kernel
        self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[
            self.inference_data_type])] * layer_num)   # self_output_bias
        self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[
            self.inference_data_type])] * layer_num)   # ffn_layernorm_gamma
        self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[
            self.inference_data_type])] * layer_num)   # ffn_layernorm_beta
        self.w.extend([torch.zeros(global_hidden_units, local_inter_size,
                      dtype=str_type_map[self.inference_data_type])] * layer_num)   # ffn_kernel1
        self.w.extend([torch.zeros(local_inter_size, dtype=str_type_map[
            self.inference_data_type])] * layer_num)   # ffn_bias1
        self.w.extend([torch.zeros(local_inter_size, global_hidden_units,
                      dtype=str_type_map[self.inference_data_type])] * layer_num)   # ffn_kernel2
        self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[
            self.inference_data_type])] * layer_num)   # ffn_bias2

        optional_adapter_offset = 0
        # After Transformer blocks
        if self.has_pre_decoder_layernorm:
            self.w.append(torch.zeros(global_hidden_units, dtype=str_type_map[
                self.inference_data_type]))   # embedding layernorm gamma
            self.w.append(torch.zeros(global_hidden_units, dtype=str_type_map[
                self.inference_data_type]))   # embedding layernorm beta
            optional_adapter_offset += 2
        if self.has_post_decoder_layernorm:
            self.w.append(torch.zeros(global_hidden_units, dtype=str_type_map[
                self.inference_data_type]))   # final layernorm gamma
            self.w.append(torch.zeros(global_hidden_units, dtype=str_type_map[
                self.inference_data_type]))   # final layernorm beta
            optional_adapter_offset += 2
        if self.has_positional_encoding:
            self.w.append(torch.zeros(max_seq_len, global_hidden_units, dtype=str_type_map[
                self.inference_data_type]))   # position_encoding_table
            optional_adapter_offset += 1

        self.pre_embed_idx = len(self.w)
        self.w.append(torch.zeros(vocab_size, global_hidden_units,
                      dtype=str_type_map[self.inference_data_type]))   # embedding_table
        self.post_embed_idx = len(self.w)
        self.w.append(torch.zeros(vocab_size, global_hidden_units, dtype=str_type_map[
            self.inference_data_type]))   # post embedding_kernel
        self.adapter_offset = 2 + optional_adapter_offset

        self.w.extend([torch.empty(
            0, dtype=str_type_map[self.inference_data_type])] * layer_num)   # gating_weight
        self.adapter_offset += layer_num

        # adapters
        if self.has_adapters:
            self.w.extend([torch.zeros(global_hidden_units, local_adapter_inter_size,
                          dtype=str_type_map[self.inference_data_type])] * layer_num)   # adaptor1_kernel1
            self.w.extend([torch.zeros(local_adapter_inter_size, dtype=str_type_map[
                self.inference_data_type])] * layer_num)   # adaptor1_bias1
            self.w.extend([torch.zeros(local_adapter_inter_size, global_hidden_units,
                          dtype=str_type_map[self.inference_data_type])] * layer_num)   # adaptor1_kernel2
            self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[
                self.inference_data_type])] * layer_num)   # adaptor1_bias2
            self.w.extend([torch.zeros(global_hidden_units, local_adapter_inter_size,
                          dtype=str_type_map[self.inference_data_type])] * layer_num)   # adaptor2_kernel1
            self.w.extend([torch.zeros(local_adapter_inter_size, dtype=str_type_map[
                self.inference_data_type])] * layer_num)   # adaptor2_bias1
            self.w.extend([torch.zeros(local_adapter_inter_size, global_hidden_units,
                          dtype=str_type_map[self.inference_data_type])] * layer_num)   # adaptor2_kernel2
            self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[
                self.inference_data_type])] * layer_num)   # adaptor2_bias2

        # Initialization
        self._map(lambda w: torch.nn.init.normal_(w, mean=0., std=1.))

        if (self.int8_mode != 0):
            self.int8_w.extend([torch.zeros(global_hidden_units, local_hidden_units *
                               3, dtype=torch.int8)] * layer_num)   # self_int8_kernel
            self.scale.extend([torch.zeros(
                local_hidden_units * 3, dtype=torch.float)] * layer_num)   # self_scale
            self.int8_w.extend([torch.zeros(local_hidden_units, global_hidden_units, dtype=torch.int8)]
                               * layer_num)   # self_output_int8_kernel
            # self_output_scale
            self.scale.extend(
                [torch.zeros(global_hidden_units, dtype=torch.float)] * layer_num)
            self.int8_w.extend([torch.zeros(global_hidden_units, local_inter_size,
                               dtype=torch.int8)] * layer_num)   # ffn_int8_kernel1
            self.scale.extend(
                [torch.zeros(local_inter_size, dtype=torch.float)] * layer_num)   # ffn_scale1
            self.int8_w.extend([torch.zeros(local_inter_size, global_hidden_units,
                               dtype=torch.int8)] * layer_num)   # ffn_int8_kernel2
            self.scale.extend(
                [torch.zeros(global_hidden_units, dtype=torch.float)] * layer_num)   # ffn_scale2
            if self.has_adapters:
                self.int8_w.extend([torch.zeros(global_hidden_units, local_adapter_inter_size,
                                   dtype=torch.int8)] * layer_num)   # adaptor1_int8_kernel1
                self.scale.extend([torch.zeros(local_adapter_inter_size, dtype=torch.float)]
                                  * layer_num)   # adaptor1_scale1
                self.int8_w.extend([torch.zeros(local_adapter_inter_size, global_hidden_units,
                                   dtype=torch.int8)] * layer_num)   # adaptor1_int8_kernel2
                self.scale.extend([torch.zeros(
                    global_hidden_units, dtype=torch.float)] * layer_num)   # adaptor1_scale2
                self.int8_w.extend([torch.zeros(global_hidden_units, local_adapter_inter_size,
                                   dtype=torch.int8)] * layer_num)   # adaptor2_int8_kernel1
                self.scale.extend([torch.zeros(local_adapter_inter_size, dtype=torch.float)]
                                  * layer_num)   # adaptor2_scale1
                self.int8_w.extend([torch.zeros(local_adapter_inter_size, global_hidden_units,
                                   dtype=torch.int8)] * layer_num)   # adaptor2_int8_kernel2
                self.scale.extend([torch.zeros(
                    global_hidden_units, dtype=torch.float)] * layer_num)   # adaptor2_scale2

    def __getitem__(self, idx):
        return self.w[idx]

    def __setitem__(self, idx, val):
        self.w[idx] = val

    def __len__(self):
        return len(self.w)

    def _map(self, func):
        assert(self.pre_embed_idx < self.post_embed_idx,
               "Pre decoder embedding index should be lower than post decoder embedding index.")
        for i in range(len(self.w)):
            if isinstance(self.w[i], list):
                for j in range(len(self.w[i])):
                    self.w[i][j] = func(self.w[i][j])
            else:
                if self.share_embed and i == self.post_embed_idx:
                    # If sharing the pre and post embedding, any mapping to
                    # the pre decoder weight will give the same output to the
                    # post decoder weight, so we just copy here.
                    self.w[self.post_embed_idx] = self.w[self.pre_embed_idx]
                else:
                    self.w[i] = func(self.w[i])

    def _map_int8(self, func):
        for i in range(len(self.int8_w)):
            if isinstance(self.int8_w[i], list):
                for j in range(len(self.int8_w[i])):
                    self.int8_w[i][j] = func(self.int8_w[i][j])

            else:
                self.int8_w[i] = func(self.int8_w[i])
        for i in range(len(self.scale)):
            if isinstance(self.scale[i], list):
                for j in range(len(self.scale[i])):
                    self.scale[i][j] = func(self.scale[i][j])

            else:
                self.scale[i] = func(self.scale[i])

    def _map_int8_scales(self, func):
        for i in range(len(self.scale)):
            if isinstance(self.scale[i], list):
                for j in range(len(self.scale[i])):
                    self.scale[i][j] = func(self.scale[i][j])

            else:
                self.scale[i] = func(self.scale[i])

    def load(self, ckpt_path, tp_rank, pipeline_para_rank):
        if not os.path.exists(ckpt_path):
            raise FileNotFoundError(f"Failed to find {ckpt_path}")
        w = []

        type_map = {np.float32: torch.float32, np.float16: torch.float16}
        # Load

        def is_load(i): return i >= self.layers_per_device * \
            pipeline_para_rank and i < self.layers_per_device * \
            (pipeline_para_rank + 1)

        def load_to_torch(npdata: str, is_load: bool):
            if is_load:
                return torch.from_numpy(npdata).to(str_type_map[self.inference_data_type])
                #return torch.from_numpy(np.fromfile(file_path, dtype=self.weights_data_type)).to(str_type_map[self.inference_data_type])
            else:
                return torch.empty(0).to(str_type_map[self.inference_data_type])   
        
        
        def get_np_data(h5f, layername, layer_num, weight_type, tp_rank=None):
            if tp_rank is None:
                return [load_to_torch(h5f[f'model.layers.{i}.{layername}.{weight_type}']["weights"][:], is_load(i))  for i in range(layer_num)]
            else:
                return [load_to_torch(h5f[f'model.layers.{i}.{layername}.{weight_type}.{tp_rank}']["weights"][:], is_load(i))  for i in range(layer_num)]
            
        def get_np_data_single(h5f, layername, weight_type, is_loaded, tp_rank=None):
            if weight_type is None:
                return load_to_torch(h5f[f'model.{layername}']["weights"][:], is_loaded)

            if tp_rank is None:
                 return load_to_torch(h5f[f'model.{layername}.{weight_type}']["weights"][:], is_loaded)
            else:
                return load_to_torch(h5f[f'model.{layername}.{weight_type}.{tp_rank}']["weights"][:], is_loaded)
        
        import h5py
        ckpt_f = h5py.File(ckpt_path, "r")

        w.extend(get_np_data(ckpt_f, "input_layernorm", self.layer_num, "weight"))
        w.extend(get_np_data(ckpt_f, "input_layernorm", self.layer_num, "bias"))

        w.extend(get_np_data(ckpt_f, "attention.query_key_value", self.layer_num, "weight", tp_rank))
        w.extend(get_np_data(ckpt_f, "attention.query_key_value", self.layer_num, "bias", tp_rank))

        w.extend(get_np_data(ckpt_f, "attention.dense", self.layer_num, "weight", tp_rank))
        w.extend(get_np_data(ckpt_f, "attention.dense", self.layer_num, "bias"))
        
        w.extend(get_np_data(ckpt_f, "post_attention_layernorm", self.layer_num, "weight"))
        w.extend(get_np_data(ckpt_f, "post_attention_layernorm", self.layer_num, "bias"))

        # if moe, load "mlp.moe.experts.dense_h_to_4h"
        w.extend(get_np_data(ckpt_f, "mlp.dense_h_to_4h", self.layer_num, "weight", tp_rank))
        w.extend(get_np_data(ckpt_f, "mlp.dense_h_to_4h", self.layer_num, "bias", tp_rank))

        # if moe, load "mlp.moe.experts.dense_4h_to_h"
        w.extend(get_np_data(ckpt_f, "mlp.dense_4h_to_h", self.layer_num, "weight", tp_rank))
        w.extend(get_np_data(ckpt_f, "mlp.dense_4h_to_h", self.layer_num, "bias"))



        if self.has_pre_decoder_layernorm:
            w.append(get_np_data_single(ckpt_f, "pre_decoder_layernorm", "weight", True))
            w.append(get_np_data_single(ckpt_f, "pre_decoder_layernorm", "bias", True))
            

        if self.has_post_decoder_layernorm:
            w.append(get_np_data_single(ckpt_f, "final_layernorm", "weight", True))
            w.append(get_np_data_single(ckpt_f, "final_layernorm", "bias", True))


        if self.has_positional_encoding:
            wpe = load_to_torch(get_np_data_single(ckpt_f, "wpe", weight_type=None, is_loaded=True)).reshape(-1, self.global_hidden_units)
            assert self.max_seq_len <= wpe.size(0), (
                f"max_seq_len ({self.max_seq_len} must not exceed "
                f"the value of maximum sequence length during training ({wpe.size(0)})."
            )
            w.append(wpe)

        w.append(get_np_data_single(ckpt_f, "wte", weight_type=None, is_loaded=True))
        
        if "model.lm_head.weight" in ckpt_f.keys():
            self.share_embed = False
            w.append(get_np_data_single(ckpt_f, "lm_head", "weight", True))
        else:
            self.share_embed = True
            w.append(torch.empty(0).to(str_type_map[self.inference_data_type]))
        
        gate_list = []
        for i in range(self.layer_num):
            print(">>>???>>")
            if f"model.layers.{i}.mlp.moe.gate.wg.weight" in ckpt_f.keys():
                gate_list.append(load_to_torch(
                    f"{ckpt_path}/model.layers.{i}.mlp.moe.gate.wg.weight.bin", True))
            else:
                gate_list.append(load_to_torch(
                    f"{ckpt_path}/model.layers.{i}.mlp.moe.gate.wg.weight.bin", False))
        w.extend(gate_list)
        """
        if self.has_adapters:
            w.extend([load_to_torch(
                f"{ckpt_path}/model.layers.{i}.after_attention_adapter.dense_h_to_4h.weight.{tp_rank}.bin"
                if os.path.isfile(f"{ckpt_path}/model.layers.{i}.after_attention_adapter.dense_h_to_4h.weight.{tp_rank}.bin")
                else f"{ckpt_path}/model.layers.{i}.after_attention_adapter.moe.experts.dense_h_to_4h.weight.{tp_rank}.bin",
                is_load(i)) for i in range(self.layer_num)])
            w.extend([load_to_torch(
                f"{ckpt_path}/model.layers.{i}.after_attention_adapter.dense_h_to_4h.bias.{tp_rank}.bin"
                if os.path.isfile(f"{ckpt_path}/model.layers.{i}.after_attention_adapter.dense_h_to_4h.bias.{tp_rank}.bin")
                else f"{ckpt_path}/model.layers.{i}.after_attention_adapter.moe.experts.dense_h_to_4h.bias.{tp_rank}.bin",
                is_load(i)) for i in range(self.layer_num)])
            w.extend([load_to_torch(
                f"{ckpt_path}/model.layers.{i}.after_attention_adapter.dense_4h_to_h.weight.{tp_rank}.bin"
                if os.path.isfile(f"{ckpt_path}/model.layers.{i}.after_attention_adapter.dense_4h_to_h.weight.{tp_rank}.bin")
                else f"{ckpt_path}/model.layers.{i}.after_attention_adapter.moe.experts.dense_4h_to_h.weight.{tp_rank}.bin",
                is_load(i)) for i in range(self.layer_num)])
            w.extend([load_to_torch(
                f"{ckpt_path}/model.layers.{i}.after_attention_adapter.dense_4h_to_h.bias.bin"
                if os.path.isfile(f"{ckpt_path}/model.layers.{i}.after_attention_adapter.dense_4h_to_h.bias.bin")
                else f"{ckpt_path}/model.layers.{i}.after_attention_adapter.moe.experts.dense_4h_to_h.bias.bin",
                is_load(i)) for i in range(self.layer_num)])
            w.extend([load_to_torch(
                f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.dense_h_to_4h.weight.{tp_rank}.bin"
                if os.path.isfile(f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.dense_h_to_4h.weight.{tp_rank}.bin")
                else f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.moe.experts.dense_h_to_4h.weight.{tp_rank}.bin",
                is_load(i)) for i in range(self.layer_num)])
            w.extend([load_to_torch(
                f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.dense_h_to_4h.bias.{tp_rank}.bin"
                if os.path.isfile(f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.dense_h_to_4h.bias.{tp_rank}.bin")
                else f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.moe.experts.dense_h_to_4h.bias.{tp_rank}.bin",
                is_load(i)) for i in range(self.layer_num)])
            w.extend([load_to_torch(
                f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.dense_4h_to_h.weight.{tp_rank}.bin"
                if os.path.isfile(f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.dense_4h_to_h.weight.{tp_rank}.bin")
                else f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.moe.experts.dense_4h_to_h.weight.{tp_rank}.bin",
                is_load(i)) for i in range(self.layer_num)])
            w.extend([load_to_torch(
                f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.dense_4h_to_h.bias.bin"
                if os.path.isfile(f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.dense_4h_to_h.bias.bin")
                else f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.moe.experts.dense_4h_to_h.bias.bin",
                is_load(i)) for i in range(self.layer_num)])
        """
        assert len(self.w) == len(w)

        # Reshape
        try:
            for i in range(len(w)):
                if w[i].nelement() == self.w[i].nelement():
                    self.w[i] = w[i].reshape(self.w[i].shape)
                else:
                    self.w[i] = w[i]

        except RuntimeError:
            raise RuntimeError(
                f"head_num, size_per_head, vocab_size, and max_seq_len must be the same as the ones during training "
                f"(idx: {i} expected shape: {self.w[i].shape} got shape: {w[i].shape})."
            )

        # transpose calibrate quantize the kernel
        layer_num = self.layer_num
        if self.int8_mode != 0:
            for i in range(layer_num):
                self.int8_w[i + 0 * layer_num], self.scale[i + 0 *
                                                           layer_num] = self.weight_transpose_calibrate_quantize(self.w[2 * layer_num + i])
                self.int8_w[i + 1 * layer_num], self.scale[i + 1 *
                                                           layer_num] = self.weight_transpose_calibrate_quantize(self.w[4 * layer_num + i])
                self.int8_w[i + 2 * layer_num], self.scale[i + 2 *
                                                           layer_num] = self.weight_transpose_calibrate_quantize(self.w[8 * layer_num + i])
                self.int8_w[i + 3 * layer_num], self.scale[i + 3 *
                                                           layer_num] = self.weight_transpose_calibrate_quantize(self.w[10 * layer_num + i])

                # We clear the original weights since they are no longer needed
                if self.int8_mode == 1:
                    self.w[2 * layer_num +
                           i] = torch.empty(0).to(str_type_map[self.inference_data_type])
                    self.w[4 * layer_num +
                           i] = torch.empty(0).to(str_type_map[self.inference_data_type])
                    self.w[8 * layer_num +
                           i] = torch.empty(0).to(str_type_map[self.inference_data_type])
                    self.w[10 * layer_num +
                           i] = torch.empty(0).to(str_type_map[self.inference_data_type])

                if self.has_adapters:
                    self.int8_w[i + 4 * layer_num], self.scale[i + 4 * layer_num] = self.weight_transpose_calibrate_quantize(
                        self.w[12 * layer_num + i + self.adapter_offset])
                    self.int8_w[i + 5 * layer_num], self.scale[i + 5 * layer_num] = self.weight_transpose_calibrate_quantize(
                        self.w[14 * layer_num + i + self.adapter_offset])
                    self.int8_w[i + 6 * layer_num], self.scale[i + 6 * layer_num] = self.weight_transpose_calibrate_quantize(
                        self.w[16 * layer_num + i + self.adapter_offset])
                    self.int8_w[i + 7 * layer_num], self.scale[i + 7 * layer_num] = self.weight_transpose_calibrate_quantize(
                        self.w[18 * layer_num + i + self.adapter_offset])

                    # Similar to above:
                    if self.int8_mode == 1:
                        self.w[12 * layer_num + i + self.adapter_offset] = torch.empty(
                            0).to(str_type_map[self.inference_data_type])
                        self.w[14 * layer_num + i + self.adapter_offset] = torch.empty(
                            0).to(str_type_map[self.inference_data_type])
                        self.w[16 * layer_num + i + self.adapter_offset] = torch.empty(
                            0).to(str_type_map[self.inference_data_type])
                        self.w[18 * layer_num + i + self.adapter_offset] = torch.empty(
                            0).to(str_type_map[self.inference_data_type])
        return True


class BaseBelleModel(nn.Module):
    def __init__(self,
                 head_num, size_per_head,
                 vocab_size, start_id, end_id, layer_num,
                 max_seq_len: int,
                 tensor_para_size: int,
                 pipeline_para_size: int,
                 lib_path: typing.Union[str, pathlib.Path],
                 inference_data_type: str,
                 inter_size: int = 0,
                 # gpt_variant_params
                 layernorm_eps: float = 1e-6,
                 layernorm_type: typing.Literal['pre_layernorm',
                                                'post_layernorm'] = "pre_layernorm",
                 activation_type: str = "Gelu",
                 gpt_with_moe: bool = False,
                 expert_num: int = 0,
                 moe_k: int = 0,
                 moe_layer_index: typing.List = [],
                 has_positional_encoding: bool = True,
                 has_pre_decoder_layernorm: bool = False,
                 has_post_decoder_layernorm: bool = True,
                 has_adapters: bool = False,
                 adapter_inter_size: int = 0,
                 use_attention_linear_bias: bool = False,
                 int8_mode: int = 0,
                 weights_data_type: typing.Union[str, np.dtype] = np.float32,
                 shared_contexts_ratio: float = 1.0):
        super().__init__()
        self.head_num = head_num
        self.size_per_head = size_per_head
        self.vocab_size = vocab_size
        self.start_id = start_id
        self.end_id = end_id
        self.layer_num = layer_num
        self.inter_size = inter_size if inter_size != 0 else 4 * \
            self.head_num * self.size_per_head

        # gpt_variant_params
        self.layernorm_eps = layernorm_eps
        self.layernorm_type = layernorm_type
        self.activation_type = activation_type
        self.gpt_with_moe = gpt_with_moe
        self.expert_num = expert_num
        self.moe_k = moe_k
        self.moe_layer_index = moe_layer_index
        self.has_positional_encoding = has_positional_encoding
        self.has_pre_decoder_layernorm = has_pre_decoder_layernorm
        self.has_post_decoder_layernorm = has_post_decoder_layernorm
        self.has_adapters = has_adapters
        self.adapter_inter_size = adapter_inter_size
        self.use_attention_linear_bias = use_attention_linear_bias

        # multi-gpu params
        self.tensor_para_size = tensor_para_size
        self.pipeline_para_size = pipeline_para_size
        self.use_sparse_gemm = False
        self.build_model = False
        self.int8_mode = int8_mode
        self.weights_data_type = weights_data_type
        self.shared_contexts_ratio = shared_contexts_ratio

        assert torch.cuda.is_available(), "CUDA is required for this model."

        assert head_num % tensor_para_size == 0, "head_num must be a multiple of tensor_para_size."
        assert layer_num % pipeline_para_size == 0, "layer_num must be a multiple of pipeline_para_size."

        # Load the C++ model into Pytorch model.
        torch.classes.load_library(os.path.abspath(lib_path))

        # Prepare weights
        self.weights = BaseBelleWeights(head_num, size_per_head, layer_num, vocab_size,
                                        max_seq_len, tensor_para_size, pipeline_para_size,
                                        weights_data_type=weights_data_type,
                                        inference_data_type=inference_data_type,
                                        gpt_with_moe=self.gpt_with_moe,
                                        has_positional_encoding=self.has_positional_encoding,
                                        has_pre_decoder_layernorm=self.has_pre_decoder_layernorm,
                                        has_post_decoder_layernorm=self.has_post_decoder_layernorm,
                                        has_adapters=self.has_adapters,
                                        adapter_inter_size=self.adapter_inter_size,
                                        int8_mode=int8_mode,
                                        inter_size=inter_size)

        # Prepare for tensor/pipeline parallel
        try:
            dist.init_process_group(backend='mpi')
        except:
            print("[INFO] WARNING: Have initialized the process group")
        self.rank = dist.get_rank()
        self.device_count = torch.cuda.device_count()
        self.device = self.rank % self.device_count
        torch.cuda.set_device(self.device)

        world_size = dist.get_world_size()
        assert world_size == tensor_para_size * \
            pipeline_para_size, "tensor_para_size * pipeline_para_size must be equal to world_size."

        self.tensor_para_rank = self.rank % self.tensor_para_size
        self.pipeline_para_rank = self.rank // self.tensor_para_size

    def load(self, ckpt_path):
        is_load = self.weights.load(ckpt_path, tp_rank=self.tensor_para_rank,
                                    pipeline_para_rank=self.pipeline_para_rank)
        self.cuda()
        torch.cuda.empty_cache()  # clean cache for model weight preprocessing
        return is_load

    def sparse(self):
        if not self.use_sparse_gemm:
            self.use_sparse_gemm = True

    def cuda(self):
        self.weights._map(lambda w: w.cuda(self.device))
        if self.int8_mode != 0:
            self.weights._map_int8(lambda w: w.cuda(self.device))

        if self.build_model:
            del self.model
            self.build_model = False

        self.model = torch.classes.FasterTransformer.GptOp(
            self.head_num, self.size_per_head, self.inter_size,
            self.layer_num,
            self.expert_num,
            self.moe_k,
            self.moe_layer_index,
            self.vocab_size, self.start_id, self.end_id,
            self.use_sparse_gemm,
            # gpt_variant_params
            self.layernorm_eps,
            self.layernorm_type,
            self.activation_type,
            self.has_positional_encoding,
            self.has_pre_decoder_layernorm,
            self.has_post_decoder_layernorm,
            self.has_adapters,
            self.adapter_inter_size,
            self.use_attention_linear_bias,
            self.weights.w)
        self.build_model = True

    def forward(self,
                start_ids: torch.IntTensor,
                start_lengths: torch.IntTensor,
                output_len: int,
                beam_width: int = 1,
                top_k: typing.Optional[torch.IntTensor] = None,
                top_p: typing.Optional[torch.FloatTensor] = None,
                beam_search_diversity_rate: typing.Optional[torch.FloatTensor] = None,
                temperature: typing.Optional[torch.FloatTensor] = None,
                len_penalty: typing.Optional[torch.FloatTensor] = None,
                repetition_penalty: typing.Optional[torch.FloatTensor] = None,
                presence_penalty: typing.Optional[torch.FloatTensor] = None,
                min_length: typing.Optional[torch.IntTensor] = None,
                random_seed: typing.Optional[torch.LongTensor] = None,
                bad_words_list: typing.Optional[torch.IntTensor] = None,
                return_output_length: bool = False,
                return_cum_log_probs: int = 0):
        if not self.build_model:
            # for the cases we don't load model
            self.cuda()
            torch.cuda.empty_cache()  # clean cache for model weight preprocessing
        input_len = start_ids.size(1)
        assert input_len > 0, "input len must be larger than zero. For an unconditional case, use start_id as the first token."

        # Inputs to device
        start_ids = start_ids.cuda(self.device)
        start_lengths = start_lengths.cuda(self.device)
        # outputs: output_ids, output_lengths, output_cum_log_probs (optional)
        outputs = self.model.forward(start_ids,
                                     start_lengths,
                                     output_len,
                                     beam_width,  # optional, can be None
                                     top_k,  # optional, can be None
                                     top_p,  # optional, can be None
                                     beam_search_diversity_rate,  # optional, can be None
                                     temperature,  # optional, can be None
                                     len_penalty,  # optional, can be None
                                     repetition_penalty,  # optional, can be None
                                     presence_penalty,  # optional, can be None
                                     min_length,  # optional, can be None
                                     random_seed,  # optional, can be None
                                     bad_words_list,  # optional, can be None
                                     return_cum_log_probs)  # optional, can be None
        if return_cum_log_probs == 0:
            output_ids, output_lengths = outputs
        else:
            output_ids, output_lengths, output_cum_log_probs = outputs
        if return_output_length:
            if return_cum_log_probs > 0:
                return output_ids, output_lengths, output_cum_log_probs
            else:
                return output_ids, output_lengths
        else:
            return output_ids

    def set_input_tensor(self, input_tensor):
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
        self.input_tensor = input_tensor


class BaseParallelBelleModel(BaseBelleModel):

    def cuda(self):
        self.weights._map(lambda w: w.cuda(self.device))
        if self.int8_mode != 0:
            self.weights._map_int8(lambda w: w.cuda(self.device))

        if self.build_model:
            del self.model
            self.build_model = False
        self.model = torch.classes.FasterTransformer.ParallelGptOp(
            self.head_num, self.size_per_head, self.inter_size,
            self.layer_num,
            self.expert_num,
            self.moe_k,
            self.moe_layer_index,
            self.vocab_size, self.start_id, self.end_id,
            self.tensor_para_size, self.pipeline_para_size, self.int8_mode,
            # GPT variant parameters
            self.layernorm_eps,
            self.layernorm_type,
            self.activation_type,
            self.has_positional_encoding,
            self.has_pre_decoder_layernorm,
            self.has_post_decoder_layernorm,
            self.has_adapters,
            self.adapter_inter_size,
            self.use_attention_linear_bias,
            self.weights.w,
            self.weights.int8_w,
            self.weights.scale,
            self.shared_contexts_ratio)
        self.build_model = True


class BelleWeight(BaseBelleWeights):

    def __init__(self, head_num, size_per_head, layer_num, vocab_size,
                 tensor_para_size, pipeline_para_size, weights_data_type, inference_data_type,
                 int8_mode=0):
        super().__init__(
            head_num, size_per_head, layer_num, vocab_size, 0,
            tensor_para_size, pipeline_para_size, weights_data_type,
            inference_data_type,
            has_adapters=False,
            adapter_inter_size=0,
            has_positional_encoding=False,
            has_pre_decoder_layernorm=True,
            has_post_decoder_layernorm=True,
            int8_mode=int8_mode)


class BelleModel(BaseParallelBelleModel):

    def __init__(self,
                 head_num, size_per_head,
                 vocab_size, start_id, end_id, layer_num,
                 tensor_para_size: int,
                 pipeline_para_size: int,
                 lib_path: str | Path,
                 inference_data_type: str,
                 weights_data_type: str | np.dtype = np.float32,
                 layernorm_eps: float = 1e-5,
                 shared_contexts_ratio: float = 1.0,
                 int8_mode: int = 0):
        super().__init__(
            head_num, size_per_head, vocab_size, start_id, end_id, layer_num,
            0, tensor_para_size, pipeline_para_size,
            lib_path=lib_path,
            inference_data_type=inference_data_type,
            layernorm_eps=layernorm_eps,
            # gpt_variant_params
            layernorm_type="pre_layernorm",
            activation_type="Gelu",
            has_positional_encoding=False,
            has_pre_decoder_layernorm=True,
            has_post_decoder_layernorm=True,
            has_adapters=False,
            adapter_inter_size=0,
            use_attention_linear_bias=True,
            int8_mode=int8_mode,
            weights_data_type=weights_data_type,
            shared_contexts_ratio=shared_contexts_ratio)

    def set_input_tensor(self, input_tensor: Optional[torch.Tensor]):
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func
        """
        self.input_tensor = input_tensor