English
LLM
BELLE
bigmoyan commited on
Commit
3eff70a
·
1 Parent(s): 242366d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +113 -0
README.md ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: creativeml-openrail-m
3
+ language:
4
+ - en
5
+ tags:
6
+ - LLM
7
+ - tensorRT
8
+ - Belle
9
+ ---
10
+ ## Model Card for lyraBelle
11
+
12
+ lyraBelle is currently the **fastest Belle model** available. To the best of our knowledge, it is the **first accelerated version of ChatGLM-6B**.
13
+
14
+ The inference speed of lyraChatGLM has achieved **10x** acceleration upon the ealry original version. We are still working hard to further improve the performance.
15
+
16
+ Among its main features are:
17
+
18
+ - weights: original BELLE-7B-2M weights released by BelleGroup.
19
+ - device: Any
20
+ - batch_size: compiled with dynamic batch size, max batch_size = 8
21
+
22
+ ## Speed
23
+
24
+ ### test environment
25
+
26
+ - device: Nvidia A100 40G
27
+ - batch size: 8
28
+
29
+
30
+ |version|speed|
31
+ |:-:|:-:|
32
+ |original|30 tokens/s|
33
+ |lyraBelle|310 tokens/s|
34
+
35
+
36
+ ## Model Sources
37
+
38
+ - **Repository:** [https://huggingface.co/BelleGroup/BELLE-7B-2M?clone=true]
39
+
40
+ ## Try Demo in 2 fast steps
41
+
42
+ ``` bash
43
+ #step 1
44
+ git clone https://huggingface.co/TMElyralab/lyraChatGLM
45
+ cd lyraChatGLM
46
+
47
+ #step 2
48
+ docker run --gpus=1 --rm --net=host -v ${PWD}:/workdir yibolu96/lyra-chatglm-env:0.0.1 python3 /workdir/demo.py
49
+ ```
50
+
51
+ ## Uses
52
+
53
+ ```python
54
+ from transformers import AutoTokenizer
55
+ from faster_chat_glm import GLM6B, FasterChatGLM
56
+
57
+
58
+ MAX_OUT_LEN = 100
59
+ tokenizer = AutoTokenizer.from_pretrained('./models', trust_remote_code=True)
60
+ input_str = ["为什么我们需要对深度学习模型加速?", ]
61
+ inputs = tokenizer(input_str, return_tensors="pt", padding=True)
62
+ input_ids = inputs.input_ids.to('cuda:0')
63
+
64
+
65
+ plan_path = './models/glm6b-bs8.ftm'
66
+ # kernel for chat model.
67
+ kernel = GLM6B(plan_path=plan_path,
68
+ batch_size=1,
69
+ num_beams=1,
70
+ use_cache=True,
71
+ num_heads=32,
72
+ emb_size_per_heads=128,
73
+ decoder_layers=28,
74
+ vocab_size=150528,
75
+ max_seq_len=MAX_OUT_LEN)
76
+
77
+ chat = FasterChatGLM(model_dir="./models", kernel=kernel).half().cuda()
78
+
79
+ # generate
80
+ sample_output = chat.generate(inputs=input_ids, max_length=MAX_OUT_LEN)
81
+ # de-tokenize model output to text
82
+ res = tokenizer.decode(sample_output[0], skip_special_tokens=True)
83
+ print(res)
84
+ ```
85
+ ## Demo output
86
+
87
+ ### input
88
+ 为什么我们需要对深度学习模型加速? 。
89
+
90
+ ### output
91
+ 为什么我们需要对深度学习模型加速? 深度学习模型的训练需要大量计算资源,特别是在训练模型时,需要大量的内存、GPU(图形处理器)和其他计算资源。因此,训练深度学习模型需要一定的时间,并且如果模型不能快速训练,则可能会导致训练进度缓慢或无法训练。
92
+
93
+ 以下是一些原因我们需要对深度学习模型加速:
94
+
95
+ 1. 训练深度神经网络需要大量的计算资源,特别是在训练深度神经网络时,需要更多的计算资源,因此需要更快的训练速度。
96
+
97
+ ### TODO:
98
+
99
+ We plan to implement a FasterTransformer version to publish a much faster release. Stay tuned!
100
+
101
+ ## Citation
102
+ ``` bibtex
103
+ @Misc{lyraChatGLM2023,
104
+ author = {Kangjian Wu, Zhengtao Wang, Bin Wu},
105
+ title = {lyraChatGLM: Accelerating ChatGLM by 10x+},
106
+ howpublished = {\url{https://huggingface.co/TMElyralab/lyraChatGLM}},
107
+ year = {2023}
108
+ }
109
+ ```
110
+
111
+ ## Report bug
112
+ - start a discussion to report any bugs!--> https://huggingface.co/TMElyralab/lyraChatGLM/discussions
113
+ - report bug with a `[bug]` mark in the title.