Upload 12 files
Browse files- .gitattributes +1 -0
- demo.py +47 -0
- faster_chat_glm/__init__.py +7 -0
- faster_chat_glm/__init__.py~ +3 -0
- faster_chat_glm/glm.cpython-38-x86_64-linux-gnu.so +0 -0
- faster_chat_glm/model.py +131 -0
- models/README.md +3 -0
- models/config.json +25 -0
- models/configuration_chatglm.py +92 -0
- models/glm6b-kv-cache-dy-bs8.ftm +3 -0
- models/ice_text.model +3 -0
- models/tokenization_chatglm.py +346 -0
- models/tokenizer_config.json +19 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
models/glm6b-kv-cache-dy-bs8.ftm filter=lfs diff=lfs merge=lfs -text
|
demo.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from faster_chat_glm import GLM6B, FasterChatGLM
|
5 |
+
|
6 |
+
|
7 |
+
MAX_OUT_LEN = 50
|
8 |
+
BATCH_SIZE = 8
|
9 |
+
USE_CACHE = True
|
10 |
+
|
11 |
+
print("Prepare config and inputs....")
|
12 |
+
chatglm6b_dir = './models'
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(chatglm6b_dir, trust_remote_code=True)
|
14 |
+
|
15 |
+
input_str = ["音乐推荐应该考虑哪些因素?帮我写一篇不少于800字的方案。 ", ] * BATCH_SIZE
|
16 |
+
inputs = tokenizer(input_str, return_tensors="pt", padding=True)
|
17 |
+
input_ids = inputs.input_ids
|
18 |
+
input_ids = input_ids.to('cuda:0')
|
19 |
+
print(input_ids.shape)
|
20 |
+
|
21 |
+
|
22 |
+
print('Loading faster model...')
|
23 |
+
if USE_CACHE:
|
24 |
+
plan_path = f'./models/glm6b-kv-cache-dy-bs{BATCH_SIZE}.ftm'
|
25 |
+
else:
|
26 |
+
plan_path = f'./models/glm6b-bs{BATCH_SIZE}.ftm'
|
27 |
+
|
28 |
+
# kernel for chat model.
|
29 |
+
kernel = GLM6B(plan_path=plan_path,
|
30 |
+
batch_size=BATCH_SIZE,
|
31 |
+
num_beams=1,
|
32 |
+
use_cache=USE_CACHE,
|
33 |
+
num_heads=32,
|
34 |
+
emb_size_per_heads=128,
|
35 |
+
decoder_layers=28,
|
36 |
+
vocab_size=150528,
|
37 |
+
max_seq_len=MAX_OUT_LEN)
|
38 |
+
print("test")
|
39 |
+
chat = FasterChatGLM(model_dir=chatglm6b_dir, kernel=kernel).half().cuda()
|
40 |
+
|
41 |
+
# generate
|
42 |
+
sample_output = chat.generate(inputs=input_ids, max_length=MAX_OUT_LEN)
|
43 |
+
# de-tokenize model output to text
|
44 |
+
res = tokenizer.decode(sample_output[0], skip_special_tokens=True)
|
45 |
+
print(res)
|
46 |
+
res = tokenizer.decode(sample_output[BATCH_SIZE-1], skip_special_tokens=True)
|
47 |
+
print(res)
|
faster_chat_glm/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
os.environ["TORCH_USE_RTLD_GLOBAL"]="YES"
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from .glm import GLM6B
|
7 |
+
from .model import FasterChatGLM
|
faster_chat_glm/__init__.py~
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from .glm import GLM6B
|
3 |
+
from .model import FasterChatGLM
|
faster_chat_glm/glm.cpython-38-x86_64-linux-gnu.so
ADDED
Binary file (188 kB). View file
|
|
faster_chat_glm/model.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
3 |
+
from transformers.modeling_utils import PreTrainedModel
|
4 |
+
from transformers import AutoConfig
|
5 |
+
from typing import Dict, List, Tuple, Union, Optional
|
6 |
+
|
7 |
+
|
8 |
+
class FasterChatGLM(PreTrainedModel):
|
9 |
+
def __init__(self, model_dir, kernel, *inputs, **kwargs):
|
10 |
+
config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)
|
11 |
+
config.n_head = config.num_attention_heads
|
12 |
+
config.n_embd = config.hidden_size
|
13 |
+
config.n_layer = config.num_layers
|
14 |
+
super().__init__(config, *inputs, **kwargs)
|
15 |
+
self.kernel = kernel
|
16 |
+
self.fake_reg = torch.nn.Linear(2, 2)
|
17 |
+
self.position_encoding_2d = True
|
18 |
+
|
19 |
+
def forward(self, input_ids, position_ids, attention_mask, past_key_values, *args, **kwargs):
|
20 |
+
inputs_values = [input_ids, position_ids, attention_mask]
|
21 |
+
if past_key_values is not None:
|
22 |
+
inputs_values = inputs_values + past_key_values
|
23 |
+
|
24 |
+
computed = self.kernel.infer(inputs_values)
|
25 |
+
logits = computed[0]
|
26 |
+
if len(computed) == 1:
|
27 |
+
present_key_values = None
|
28 |
+
else:
|
29 |
+
present_key_values = computed[1:]
|
30 |
+
|
31 |
+
return CausalLMOutputWithPast(logits=logits, past_key_values=present_key_values)
|
32 |
+
|
33 |
+
def get_masks_and_position_ids(self, seq, mask_position, context_length, device, gmask=False):
|
34 |
+
attention_mask = torch.ones((1, context_length, context_length), device=device)
|
35 |
+
attention_mask.tril_()
|
36 |
+
attention_mask[..., :context_length - 1] = 1
|
37 |
+
attention_mask.unsqueeze_(1)
|
38 |
+
attention_mask = (attention_mask < 0.5).bool()
|
39 |
+
|
40 |
+
if self.position_encoding_2d:
|
41 |
+
seq_length = seq.index(150004)
|
42 |
+
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
43 |
+
if not gmask:
|
44 |
+
position_ids[seq_length:] = mask_position
|
45 |
+
block_position_ids = torch.cat((
|
46 |
+
torch.zeros(seq_length, dtype=torch.long, device=device),
|
47 |
+
torch.arange(context_length - seq_length, dtype=torch.long, device=device) + 1
|
48 |
+
))
|
49 |
+
position_ids = torch.stack((position_ids, block_position_ids), dim=0)
|
50 |
+
else:
|
51 |
+
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
52 |
+
if not gmask:
|
53 |
+
position_ids[context_length - 1:] = mask_position
|
54 |
+
|
55 |
+
position_ids = position_ids.unsqueeze(0)
|
56 |
+
|
57 |
+
return attention_mask, position_ids
|
58 |
+
|
59 |
+
def prepare_one_sample(self, input_id, mask_token, past, past_key_values, use_gmask):
|
60 |
+
|
61 |
+
seq = input_id.tolist()
|
62 |
+
mask_position = seq.index(mask_token)
|
63 |
+
|
64 |
+
if mask_token not in seq:
|
65 |
+
raise ValueError("You have to add either [MASK] or [gMASK] in your input")
|
66 |
+
|
67 |
+
# only last token for input_ids if past is not None
|
68 |
+
if past is not None or past_key_values is not None:
|
69 |
+
context_length = seq.index(150004)
|
70 |
+
last_token = input_id[-1].unsqueeze(-1).unsqueeze(0) # 2 dim
|
71 |
+
proc_input_id = last_token
|
72 |
+
if self.position_encoding_2d:
|
73 |
+
position_ids = torch.tensor([[[mask_position], [len(seq) - context_length]]], dtype=torch.long,
|
74 |
+
device=input_id.device)
|
75 |
+
else:
|
76 |
+
position_ids = torch.tensor([[mask_position]], dtype=torch.long, device=input_id.device)
|
77 |
+
|
78 |
+
attention_mask = torch.zeros(1, 1, 1, 1, device=input_id.device)
|
79 |
+
else:
|
80 |
+
proc_input_id = input_id.unsqueeze(0)
|
81 |
+
attention_mask, position_ids = self.get_masks_and_position_ids(
|
82 |
+
seq=seq,
|
83 |
+
mask_position=mask_position,
|
84 |
+
context_length=len(seq),
|
85 |
+
device=input_id.device,
|
86 |
+
gmask=use_gmask
|
87 |
+
)
|
88 |
+
|
89 |
+
return (proc_input_id.to(torch.int32), position_ids.to(torch.int32),
|
90 |
+
attention_mask.to(torch.bool))
|
91 |
+
|
92 |
+
def prepare_inputs_for_generation(
|
93 |
+
self,
|
94 |
+
input_ids: torch.LongTensor,
|
95 |
+
past: Optional[torch.Tensor] = None,
|
96 |
+
past_key_values: Optional[torch.Tensor] = None,
|
97 |
+
attention_mask: Optional[torch.Tensor] = None,
|
98 |
+
use_cache: bool = None,
|
99 |
+
**kwargs
|
100 |
+
) -> dict:
|
101 |
+
|
102 |
+
MASK, gMASK = 150000, 150001
|
103 |
+
mask_token = MASK if MASK in input_ids else gMASK
|
104 |
+
use_gmask = False if MASK in input_ids else gMASK
|
105 |
+
|
106 |
+
batch_input_ids, batch_position_ids, batch_attention_mask = [], [], []
|
107 |
+
for input_id in input_ids:
|
108 |
+
proc_input_id, position_id, attention_mask = self.prepare_one_sample(
|
109 |
+
input_id, mask_token, past, past_key_values, use_gmask)
|
110 |
+
batch_input_ids.append(proc_input_id)
|
111 |
+
batch_position_ids.append(position_id)
|
112 |
+
batch_attention_mask.append(attention_mask)
|
113 |
+
|
114 |
+
batch_input_ids = torch.vstack(batch_input_ids)
|
115 |
+
batch_position_ids = torch.vstack(batch_position_ids)
|
116 |
+
batch_attention_mask = torch.vstack(batch_attention_mask)
|
117 |
+
|
118 |
+
if past is None:
|
119 |
+
past = past_key_values
|
120 |
+
|
121 |
+
if past is not None or past_key_values is not None:
|
122 |
+
self.kernel.set_context_mode(False)
|
123 |
+
else:
|
124 |
+
self.kernel.set_context_mode(self.config.use_cache)
|
125 |
+
|
126 |
+
return {
|
127 |
+
"input_ids": batch_input_ids,
|
128 |
+
"past_key_values": past_key_values,
|
129 |
+
"position_ids": batch_position_ids,
|
130 |
+
"attention_mask": batch_attention_mask
|
131 |
+
}
|
models/README.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
需要从 cos 获取加速后的 GLM6B 模型存放:
|
2 |
+
|
3 |
+
wget https://chuangxin-research-1258344705.cos.ap-guangzhou.myqcloud.com/cfs-4a8cd28be/vanewu/glm6b-kv-cache-dy-bs8.ftm?q-sign-algorithm=sha1&q-ak=AKIDBF6i7GCtKWS8ZkgOtACzX3MQDl37xYty&q-sign-time=1680756811;1689396811&q-key-time=1680756811;1689396811&q-header-list=&q-url-param-list=&q-signature=95924587fc3c8268c386db06bdb2bdb537074149
|
models/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "THUDM/chatglm-6b",
|
3 |
+
"architectures": [
|
4 |
+
"ChatGLMModel"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_chatglm.ChatGLMConfig",
|
8 |
+
"AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
9 |
+
"AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration"
|
10 |
+
},
|
11 |
+
"bos_token_id": 150004,
|
12 |
+
"eos_token_id": 150005,
|
13 |
+
"hidden_size": 4096,
|
14 |
+
"inner_hidden_size": 16384,
|
15 |
+
"layernorm_epsilon": 1e-05,
|
16 |
+
"max_sequence_length": 2048,
|
17 |
+
"model_type": "chatglm",
|
18 |
+
"num_attention_heads": 32,
|
19 |
+
"num_layers": 28,
|
20 |
+
"position_encoding_2d": true,
|
21 |
+
"torch_dtype": "float16",
|
22 |
+
"transformers_version": "4.23.1",
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 150528
|
25 |
+
}
|
models/configuration_chatglm.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" ChatGLM model configuration """
|
2 |
+
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
from transformers.utils import logging
|
5 |
+
|
6 |
+
logger = logging.get_logger(__name__)
|
7 |
+
|
8 |
+
|
9 |
+
class ChatGLMConfig(PretrainedConfig):
|
10 |
+
r"""
|
11 |
+
This is the configuration class to store the configuration of a [`~ChatGLMModel`].
|
12 |
+
It is used to instantiate an ChatGLM model according to the specified arguments, defining the model
|
13 |
+
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
|
14 |
+
the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture.
|
15 |
+
|
16 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used
|
17 |
+
to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
18 |
+
for more information.
|
19 |
+
|
20 |
+
|
21 |
+
Args:
|
22 |
+
vocab_size (`int`, *optional*, defaults to 150528):
|
23 |
+
Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the
|
24 |
+
`inputs_ids` passed when calling [`~ChatGLMModel`] or
|
25 |
+
[`~TFChatGLMModel`].
|
26 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
27 |
+
Dimension of the encoder layers and the pooler layer.
|
28 |
+
num_hidden_layers (`int`, *optional*, defaults to 28):
|
29 |
+
Number of hidden layers in the Transformer encoder.
|
30 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
31 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
32 |
+
inner_hidden_size (`int`, *optional*, defaults to 16384):
|
33 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
34 |
+
max_sequence_length (`int`, *optional*, defaults to 512):
|
35 |
+
The maximum sequence length that this model might ever be used with.
|
36 |
+
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
37 |
+
layernorm_epsilon (`float`, *optional*, defaults to 1e-5):
|
38 |
+
The epsilon used by the layer normalization layers.
|
39 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
40 |
+
Whether the model should return the last key/values attentions (not used by all models).
|
41 |
+
Example:
|
42 |
+
|
43 |
+
```python
|
44 |
+
>>> from configuration_chatglm import ChatGLMConfig
|
45 |
+
>>> from modeling_chatglm import ChatGLMModel
|
46 |
+
|
47 |
+
>>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration
|
48 |
+
>>> configuration = ChatGLMConfig()
|
49 |
+
|
50 |
+
>>> # Initializing a model from the THUDM/ChatGLM-6B style configuration
|
51 |
+
>>> model = ChatGLMModel(configuration)
|
52 |
+
|
53 |
+
>>> # Accessing the model configuration
|
54 |
+
>>> configuration = model.config
|
55 |
+
```
|
56 |
+
"""
|
57 |
+
model_type = "chatglm"
|
58 |
+
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
vocab_size=150528,
|
62 |
+
hidden_size=4096,
|
63 |
+
num_layers=28,
|
64 |
+
num_attention_heads=32,
|
65 |
+
layernorm_epsilon=1e-5,
|
66 |
+
use_cache=False,
|
67 |
+
bos_token_id=150004,
|
68 |
+
eos_token_id=150005,
|
69 |
+
pad_token_id=0,
|
70 |
+
max_sequence_length=2048,
|
71 |
+
inner_hidden_size=16384,
|
72 |
+
position_encoding_2d=True,
|
73 |
+
**kwargs
|
74 |
+
):
|
75 |
+
self.num_layers = num_layers
|
76 |
+
self.vocab_size = vocab_size
|
77 |
+
self.hidden_size = hidden_size
|
78 |
+
self.num_attention_heads = num_attention_heads
|
79 |
+
self.max_sequence_length = max_sequence_length
|
80 |
+
self.layernorm_epsilon = layernorm_epsilon
|
81 |
+
self.inner_hidden_size = inner_hidden_size
|
82 |
+
self.use_cache = use_cache
|
83 |
+
self.bos_token_id = bos_token_id
|
84 |
+
self.eos_token_id = eos_token_id
|
85 |
+
self.pad_token_id = pad_token_id
|
86 |
+
self.position_encoding_2d = position_encoding_2d
|
87 |
+
super().__init__(
|
88 |
+
pad_token_id=pad_token_id,
|
89 |
+
bos_token_id=bos_token_id,
|
90 |
+
eos_token_id=eos_token_id,
|
91 |
+
**kwargs
|
92 |
+
)
|
models/glm6b-kv-cache-dy-bs8.ftm
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54e97fb542110a3a226058eb76b6019bbaf91d3165da6ac95aa3976ee75b0421
|
3 |
+
size 14706031108
|
models/ice_text.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99871e0c85db81ad7af1028854fd091cd5778c8414ae9d94bbbc10d02c831c21
|
3 |
+
size 2699926
|
models/tokenization_chatglm.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tokenization classes for ChatGLM."""
|
2 |
+
import sys
|
3 |
+
import unicodedata
|
4 |
+
from typing import List, Optional, Union
|
5 |
+
from functools import lru_cache
|
6 |
+
import os
|
7 |
+
import collections
|
8 |
+
import re
|
9 |
+
|
10 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
11 |
+
from icetk.text_tokenizer import TextTokenizer
|
12 |
+
from icetk.utils import auto_create
|
13 |
+
import icetk.sentencepiece_model_pb2 as sp_model
|
14 |
+
from transformers.utils import logging
|
15 |
+
|
16 |
+
logger = logging.get_logger(__name__)
|
17 |
+
|
18 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
19 |
+
"THUDM/chatglm-6b": 2048,
|
20 |
+
}
|
21 |
+
|
22 |
+
|
23 |
+
class SPTokenizer:
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
vocab_file,
|
27 |
+
max_blank_length=80,
|
28 |
+
byte_fallback=True,
|
29 |
+
):
|
30 |
+
assert vocab_file is not None
|
31 |
+
self.vocab_file = vocab_file
|
32 |
+
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
|
33 |
+
self.max_blank_length = max_blank_length
|
34 |
+
self.byte_fallback = byte_fallback
|
35 |
+
self.text_tokenizer = self._build_text_tokenizer(encode_special_tokens=False)
|
36 |
+
self.special_text_tokenizer = self._build_text_tokenizer(encode_special_tokens=True)
|
37 |
+
|
38 |
+
@staticmethod
|
39 |
+
def _configure_tokenizer(
|
40 |
+
text_tokenizer: TextTokenizer,
|
41 |
+
special_tokens: List[str],
|
42 |
+
max_blank_length: int,
|
43 |
+
byte_fallback: bool,
|
44 |
+
encode_special_tokens=False,
|
45 |
+
):
|
46 |
+
# special token
|
47 |
+
special_token_type = 4 if encode_special_tokens else 3 # 3 - CONTROL, 4 - USER_DEFINE
|
48 |
+
for token in special_tokens:
|
49 |
+
text_tokenizer.proto.pieces.append(
|
50 |
+
sp_model.ModelProto.SentencePiece(piece=token, score=0.0, type=special_token_type)
|
51 |
+
)
|
52 |
+
# whitespaces
|
53 |
+
for token in [SPTokenizer.get_tab_token()] + [
|
54 |
+
SPTokenizer.get_blank_token(i) for i in range(2, max_blank_length + 1)
|
55 |
+
]:
|
56 |
+
text_tokenizer.proto.pieces.append(sp_model.ModelProto.SentencePiece(piece=token, score=0.0, type=4))
|
57 |
+
# byte fallback
|
58 |
+
if byte_fallback:
|
59 |
+
text_tokenizer.proto.trainer_spec.byte_fallback = True
|
60 |
+
for i in range(256):
|
61 |
+
text_tokenizer.proto.pieces.append(
|
62 |
+
sp_model.ModelProto.SentencePiece(piece="<0x{:02X}>".format(i), score=0.0, type=6)
|
63 |
+
)
|
64 |
+
text_tokenizer.refresh()
|
65 |
+
|
66 |
+
def _build_text_tokenizer(self, encode_special_tokens=False):
|
67 |
+
tokenizer = TextTokenizer(self.vocab_file)
|
68 |
+
self._configure_tokenizer(
|
69 |
+
tokenizer, self.special_tokens, self.max_blank_length, self.byte_fallback, encode_special_tokens
|
70 |
+
)
|
71 |
+
return tokenizer
|
72 |
+
|
73 |
+
def _get_text_tokenizer(self, encode_special_tokens=False):
|
74 |
+
if encode_special_tokens:
|
75 |
+
return self.special_text_tokenizer
|
76 |
+
else:
|
77 |
+
return self.text_tokenizer
|
78 |
+
|
79 |
+
@staticmethod
|
80 |
+
def get_blank_token(length: int):
|
81 |
+
assert length >= 2
|
82 |
+
return f"<|blank_{length}|>"
|
83 |
+
|
84 |
+
@staticmethod
|
85 |
+
def get_tab_token():
|
86 |
+
return f"<|tab|>"
|
87 |
+
|
88 |
+
@property
|
89 |
+
def num_image_tokens(self):
|
90 |
+
return 20000
|
91 |
+
|
92 |
+
@property
|
93 |
+
def num_text_tokens(self):
|
94 |
+
return self.text_tokenizer.num_tokens
|
95 |
+
|
96 |
+
@property
|
97 |
+
def num_tokens(self):
|
98 |
+
return self.num_image_tokens + self.num_text_tokens
|
99 |
+
|
100 |
+
@staticmethod
|
101 |
+
def _encode_whitespaces(text: str, max_len: int = 80):
|
102 |
+
text = text.replace("\t", SPTokenizer.get_tab_token())
|
103 |
+
for i in range(max_len, 1, -1):
|
104 |
+
text = text.replace(" " * i, SPTokenizer.get_blank_token(i))
|
105 |
+
return text
|
106 |
+
|
107 |
+
def _preprocess(self, text: str, linebreak=True, whitespaces=True):
|
108 |
+
if linebreak:
|
109 |
+
text = text.replace("\n", "<n>")
|
110 |
+
if whitespaces:
|
111 |
+
text = self._encode_whitespaces(text, max_len=self.max_blank_length)
|
112 |
+
return text
|
113 |
+
|
114 |
+
def encode(
|
115 |
+
self, text: str, linebreak=True, whitespaces=True, special_tokens=False, add_dummy_prefix=True
|
116 |
+
) -> List[int]:
|
117 |
+
"""
|
118 |
+
@param text: Text to encode.
|
119 |
+
@param linebreak: Whether to encode newline (\n) in text.
|
120 |
+
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
|
121 |
+
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
|
122 |
+
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
|
123 |
+
"""
|
124 |
+
text = self._preprocess(text, linebreak, whitespaces)
|
125 |
+
if not add_dummy_prefix:
|
126 |
+
text = "<n>" + text
|
127 |
+
tmp = self._get_text_tokenizer(encode_special_tokens=special_tokens).encode(text)
|
128 |
+
tokens = [x + self.num_image_tokens for x in tmp]
|
129 |
+
return tokens if add_dummy_prefix else tokens[2:]
|
130 |
+
|
131 |
+
def decode(self, text_ids: List[int], special_tokens=False) -> str:
|
132 |
+
ids = [int(_id) - self.num_image_tokens for _id in text_ids]
|
133 |
+
ids = [_id for _id in ids if _id >= 0]
|
134 |
+
text = self._get_text_tokenizer(encode_special_tokens=special_tokens).decode(ids)
|
135 |
+
text = text.replace("<n>", "\n")
|
136 |
+
text = text.replace(SPTokenizer.get_tab_token(), "\t")
|
137 |
+
for i in range(2, self.max_blank_length + 1):
|
138 |
+
text = text.replace(self.get_blank_token(i), " " * i)
|
139 |
+
return text
|
140 |
+
|
141 |
+
def tokenize(
|
142 |
+
self, text: str, linebreak=True, whitespaces=True, special_tokens=False, add_dummy_prefix=True
|
143 |
+
) -> List[str]:
|
144 |
+
"""
|
145 |
+
@param text: Text to encode.
|
146 |
+
@param linebreak: Whether to encode newline (\n) in text.
|
147 |
+
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
|
148 |
+
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
|
149 |
+
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
|
150 |
+
"""
|
151 |
+
text = self._preprocess(text, linebreak, whitespaces)
|
152 |
+
if not add_dummy_prefix:
|
153 |
+
text = "<n>" + text
|
154 |
+
tokens = self._get_text_tokenizer(encode_special_tokens=special_tokens).tokenize(text)
|
155 |
+
return tokens if add_dummy_prefix else tokens[2:]
|
156 |
+
|
157 |
+
def __getitem__(self, x: Union[int, str]):
|
158 |
+
if isinstance(x, int):
|
159 |
+
if x < self.num_image_tokens:
|
160 |
+
return "<image_{}>".format(x)
|
161 |
+
else:
|
162 |
+
return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens)
|
163 |
+
elif isinstance(x, str):
|
164 |
+
if x.startswith("<image_") and x.endswith(">") and x[7:-1].isdigit():
|
165 |
+
return int(x[7:-1])
|
166 |
+
else:
|
167 |
+
return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens
|
168 |
+
else:
|
169 |
+
raise ValueError("The key should be str or int.")
|
170 |
+
|
171 |
+
|
172 |
+
class ChatGLMTokenizer(PreTrainedTokenizer):
|
173 |
+
"""
|
174 |
+
Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding.
|
175 |
+
|
176 |
+
Args:
|
177 |
+
vocab_file (`str`):
|
178 |
+
Path to the vocabulary file.
|
179 |
+
"""
|
180 |
+
|
181 |
+
vocab_files_names = {"vocab_file": "ice_text.model"}
|
182 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
183 |
+
model_input_names = ["input_ids"]
|
184 |
+
|
185 |
+
def __init__(
|
186 |
+
self,
|
187 |
+
vocab_file,
|
188 |
+
do_lower_case=False,
|
189 |
+
remove_space=False,
|
190 |
+
bos_token='sop',
|
191 |
+
eos_token='eos',
|
192 |
+
eop_token='eop',
|
193 |
+
mask_token='[MASK]',
|
194 |
+
gmask_token='[gMASK]',
|
195 |
+
padding_side="left",
|
196 |
+
**kwargs
|
197 |
+
) -> None:
|
198 |
+
super().__init__(
|
199 |
+
do_lower_case=do_lower_case,
|
200 |
+
remove_space=remove_space,
|
201 |
+
padding_side=padding_side,
|
202 |
+
**kwargs
|
203 |
+
)
|
204 |
+
|
205 |
+
self.do_lower_case = do_lower_case
|
206 |
+
self.remove_space = remove_space
|
207 |
+
self.vocab_file = vocab_file
|
208 |
+
|
209 |
+
self.bos_token = bos_token
|
210 |
+
self.eos_token = eos_token
|
211 |
+
self.eop_token = eop_token
|
212 |
+
self.mask_token = mask_token
|
213 |
+
self.gMASK_token = gmask_token
|
214 |
+
|
215 |
+
self.sp_tokenizer = SPTokenizer(vocab_file)
|
216 |
+
|
217 |
+
""" Initialisation """
|
218 |
+
|
219 |
+
@property
|
220 |
+
def eop_token_id(self) -> Optional[int]:
|
221 |
+
"""
|
222 |
+
`Optional[int]`: Id of the end of sentence token in the vocabulary. Returns `None` if the token has not been
|
223 |
+
set.
|
224 |
+
"""
|
225 |
+
if self.eop_token is None:
|
226 |
+
return None
|
227 |
+
return self.convert_tokens_to_ids(self.eop_token)
|
228 |
+
|
229 |
+
@property
|
230 |
+
def vocab_size(self):
|
231 |
+
""" Returns vocab size """
|
232 |
+
return self.sp_tokenizer.num_tokens
|
233 |
+
|
234 |
+
def get_vocab(self):
|
235 |
+
""" Returns vocab as a dict """
|
236 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
237 |
+
vocab.update(self.added_tokens_encoder)
|
238 |
+
return vocab
|
239 |
+
|
240 |
+
def preprocess_text(self, inputs):
|
241 |
+
if self.remove_space:
|
242 |
+
outputs = " ".join(inputs.strip().split())
|
243 |
+
else:
|
244 |
+
outputs = inputs
|
245 |
+
|
246 |
+
if self.do_lower_case:
|
247 |
+
outputs = outputs.lower()
|
248 |
+
|
249 |
+
return outputs
|
250 |
+
|
251 |
+
def _tokenize(self, text, **kwargs):
|
252 |
+
""" Returns a tokenized string. """
|
253 |
+
text = self.preprocess_text(text)
|
254 |
+
|
255 |
+
seq = self.sp_tokenizer.tokenize(text)
|
256 |
+
|
257 |
+
return seq
|
258 |
+
|
259 |
+
def decode(
|
260 |
+
self,
|
261 |
+
token_ids: Union[List[int], List[List[int]]],
|
262 |
+
skip_special_tokens: bool = False,
|
263 |
+
clean_up_tokenization_spaces: bool = True,
|
264 |
+
spaces_between_special_tokens: bool = True,
|
265 |
+
**kwargs
|
266 |
+
) -> str:
|
267 |
+
if isinstance(token_ids[0], list):
|
268 |
+
tokens = []
|
269 |
+
for single_token_ids in token_ids:
|
270 |
+
if self.pad_token_id in single_token_ids: # remove pad
|
271 |
+
single_token_ids = list(filter((self.pad_token_id).__ne__, single_token_ids))
|
272 |
+
tokens.append(self.sp_tokenizer.decode(single_token_ids))
|
273 |
+
return (tokens)
|
274 |
+
else:
|
275 |
+
if self.pad_token_id in token_ids: # remove pad
|
276 |
+
token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
|
277 |
+
return self.sp_tokenizer.decode(token_ids)
|
278 |
+
|
279 |
+
def _convert_token_to_id(self, token):
|
280 |
+
""" Converts a token (str) in an id using the vocab. """
|
281 |
+
return self.sp_tokenizer[token]
|
282 |
+
|
283 |
+
def _convert_id_to_token(self, index):
|
284 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
285 |
+
return self.sp_tokenizer[index]
|
286 |
+
|
287 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
288 |
+
"""
|
289 |
+
Save the vocabulary and special tokens file to a directory.
|
290 |
+
|
291 |
+
Args:
|
292 |
+
save_directory (`str`):
|
293 |
+
The directory in which to save the vocabulary.
|
294 |
+
filename_prefix (`str`, *optional*):
|
295 |
+
An optional prefix to add to the named of the saved files.
|
296 |
+
|
297 |
+
Returns:
|
298 |
+
`Tuple(str)`: Paths to the files saved.
|
299 |
+
"""
|
300 |
+
if os.path.isdir(save_directory):
|
301 |
+
vocab_file = os.path.join(
|
302 |
+
save_directory, VOCAB_FILES_NAMES["vocab_file"]
|
303 |
+
)
|
304 |
+
else:
|
305 |
+
vocab_file = save_directory
|
306 |
+
|
307 |
+
with open(self.vocab_file, 'rb') as fin:
|
308 |
+
proto_str = fin.read()
|
309 |
+
|
310 |
+
with open(vocab_file, "wb") as writer:
|
311 |
+
writer.write(proto_str)
|
312 |
+
|
313 |
+
return (vocab_file,)
|
314 |
+
|
315 |
+
def build_inputs_with_special_tokens(
|
316 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
317 |
+
) -> List[int]:
|
318 |
+
"""
|
319 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
320 |
+
adding special tokens. A BERT sequence has the following format:
|
321 |
+
|
322 |
+
- single sequence: `[CLS] X [SEP]`
|
323 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
324 |
+
|
325 |
+
Args:
|
326 |
+
token_ids_0 (`List[int]`):
|
327 |
+
List of IDs to which the special tokens will be added.
|
328 |
+
token_ids_1 (`List[int]`, *optional*):
|
329 |
+
Optional second list of IDs for sequence pairs.
|
330 |
+
|
331 |
+
Returns:
|
332 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
333 |
+
"""
|
334 |
+
if token_ids_1 is not None:
|
335 |
+
token_ids_0 += token_ids_1
|
336 |
+
mask_ids = self.sp_tokenizer[self.mask_token]
|
337 |
+
gmask_ids = self.sp_tokenizer[self.gMASK_token]
|
338 |
+
if mask_ids not in token_ids_0 and gmask_ids not in token_ids_0:
|
339 |
+
token_ids_0 += [gmask_ids]
|
340 |
+
|
341 |
+
if token_ids_0[-1] != mask_ids and token_ids_0[-1] != gmask_ids:
|
342 |
+
token_ids_0 += [self.sp_tokenizer[self.eos_token]]
|
343 |
+
|
344 |
+
token_ids_0 += [self.sp_tokenizer[self.bos_token]]
|
345 |
+
|
346 |
+
return token_ids_0
|
models/tokenizer_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name_or_path": "THUDM/chatglm-6b",
|
3 |
+
"bos_token": "<sop>",
|
4 |
+
"eop_token": "<eop>",
|
5 |
+
"eos_token": "</s>",
|
6 |
+
"gmask_token": "[gMASK]",
|
7 |
+
"mask_token": "[MASK]",
|
8 |
+
"pad_token": "<pad>",
|
9 |
+
"unk_token": "<unk>",
|
10 |
+
"remove_space": false,
|
11 |
+
"do_lower_case": false,
|
12 |
+
"tokenizer_class": "ChatGLMTokenizer",
|
13 |
+
"auto_map": {
|
14 |
+
"AutoTokenizer": [
|
15 |
+
"tokenization_chatglm.ChatGLMTokenizer",
|
16 |
+
null
|
17 |
+
]
|
18 |
+
}
|
19 |
+
}
|