File size: 1,532 Bytes
ae89015 9ced76e ae89015 ddb8777 9ced76e b8227c1 9ced76e b8227c1 76d6b62 b8227c1 9ced76e ddb8777 9ced76e ddb8777 9ced76e 76d6b62 25dabe4 9ced76e 25dabe4 76d6b62 9ced76e b8227c1 9ced76e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: creativeml-openrail-m
language:
- zh
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- art
- tensorRT
---
## Model Card for lyraSD
lyraSD is a tensorRT implementation of Stable diffusion model, with stable 1.5 weights. Main features
- weights: original stable diffusion 1.5 weights
- input image: 512x512 (in img2img mode)
- output image: 512x512
- device requirements: Nvidia Ampere architecture (A100) or compatable
- super-resultion: 4x by default, optional.
lyraSD is a part of TME lyralab Fast Model Plan.
## Speed
### test on A100, img size: 512x512,superresolution=False, mode=text2img
|mode|version|speed|
|:-:|:-:|:-:|
|text2img|TensorRT official|0.41s/img|
|text2img|LyraSD|0.36s/img|
## Model Sources [optional]
- **Repository:** [https://huggingface.co/runwayml/stable-diffusion-v1-5]
## Uses
```python
from lyraSD import LyraSD
t2imodel = LyraSD("text2img", "./sd1.5-engine")
t2imodel.inference(prompt="a red ballon flying in the sky")
from PIL import Image
i2imodel = LyraSD("img2img", "./sd1.5-engine")
demo_img = Image.open("output/text2img_demo.jpg")
i2imodel.inference(prompt="comic style", image=demo_img)
```
## environment
- hardware: Nvidia Ampere architecture (A100) or compatable
- docker image avaible: https://hub.docker.com/r/bigmoyan/lyra_aigc/tags
```
docker pull bigmoyan/lyra_aigc:v0.1
```
## report bug
- start a discussion to report any bugs!--> https://huggingface.co/TMElyralab/lyraSD/discussions
- report bug with a `[bug]` mark in the title.
|