from io import BytesIO | |
import requests | |
import torch | |
from PIL import Image | |
from lyrasd_model import LyraSDImg2ImgPipeline | |
# 存放模型文件的路径,应该包含一下结构: | |
# 1. clip 模型 | |
# 2. 转换好的优化后的 unet 模型 | |
# 3. vae 模型 | |
# 4. scheduler 配置 | |
# LyraSD 的 C++ 编译动态链接库,其中包含 C++ CUDA 计算的细节 | |
lib_path = "./lyrasd_model/lyrasd_lib/libth_lyrasd_cu12_sm86.so" | |
model_path = "./models/rev-animated" | |
torch.classes.load_library(lib_path) | |
# 构建 Img2Img 的 Pipeline | |
model = LyraSDImg2ImgPipeline() | |
model.reload_pipe(model_path) | |
# 准备应用的输入和超参数 | |
prompt = "a cat, cartoon style" | |
negative_prompt = "NSFW" | |
height, width = 512, 512 | |
steps = 20 | |
guidance_scale = 7.5 | |
generator = torch.Generator().manual_seed(123) | |
num_images = 1 | |
# 从 cos 上拿个图作为初始化图片 | |
init_image_url = "https://chuangxin-research-1258344705.cos.ap-guangzhou.myqcloud.com/share/files/seaside_town.png?q-sign-algorithm=sha1&q-ak=AKIDBF6i7GCtKWS8ZkgOtACzX3MQDl37xYty&q-sign-time=1692601590;1865401590&q-key-time=1692601590;1865401590&q-header-list=&q-url-param-list=&q-signature=ca04ca92d990d94813029c0d9ef29537e5f4637c" | |
init_image = BytesIO(requests.get(init_image_url).content) | |
init_image = Image.open(init_image).convert('RGB') | |
init_image = init_image.resize((width, height), Image.Resampling.LANCZOS) | |
strength = 0.8 | |
# 推理生成 | |
images = model(prompt, init_image, strength, steps, | |
guidance_scale, negative_prompt, num_images, | |
generator=generator | |
) | |
# 存储生成的图片 | |
for i, image in enumerate(images): | |
image.save(f"./outputs/res_img2img_{i}.png") | |