English
art
Stable Diffusion
lyraSD / lyrasd_model /lyrasdxl_controlnet_txt2img_pipeline.py
yibolu
update pipeline and demos
6eca12e
raw
history blame
14 kB
import inspect
import os
import time
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
import gc
import torch
import numpy as np
from glob import glob
import PIL
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel
from diffusers.loaders import TextualInversionLoaderMixin
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL
from diffusers.schedulers import (DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
KarrasDiffusionSchedulers)
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.utils.torch_utils import randn_tensor
from diffusers.utils import logging
from PIL import Image
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection
from diffusers.utils import PIL_INTERPOLATION
from .lyrasd_vae_model import LyraSdVaeModel
from .lora_util import add_text_lora_layer, add_xltext_lora_layer, add_lora_to_opt_model, load_state_dict
from safetensors.torch import load_file
from .lyrasdxl_pipeline_base import LyraSDXLPipelineBase
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(
dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + \
(1 - guidance_rescale) * noise_cfg
return noise_cfg
class LyraSdXLControlnetTxt2ImgPipeline(LyraSDXLPipelineBase, StableDiffusionXLPipeline):
device = torch.device("cpu")
dtype = torch.float32
def __init__(self, device=torch.device("cuda"), dtype=torch.float16, vae_scale_factor=8, vae_scaling_factor=0.13025) -> None:
self.register_to_config(force_zeros_for_empty_prompt=True)
super().__init__(device, dtype, vae_scale_factor=vae_scale_factor, vae_scaling_factor=vae_scaling_factor)
def prepare_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
image = self.control_image_processor.preprocess(image, height, width)
image = image.permute(0, 2, 3, 1)
image = image.to(device=device, dtype=dtype)
# print(image.shape)
# print(image)
return image
@property
def _execution_device(self):
if not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def _get_aug_emb(self, add_embedding, time_ids, text_embeds, dtype):
time_embeds = self.add_time_proj(time_ids.flatten())
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
add_embeds = add_embeds.to(dtype)
aug_emb = add_embedding(add_embeds)
return aug_emb
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
denoising_end: Optional[float] = None,
guidance_scale: float = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
controlnet_names: Optional[List[str]] = None,
controlnet_images: Optional[List[PIL.Image.Image]] = None,
controlnet_scale: Optional[List[float]] = None,
guess_mode=False,
eta: float = 0.0,
generator: Optional[Union[torch.Generator,
List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[
int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
):
# 0. Default height and width to unet
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
callback_steps,
negative_prompt,
negative_prompt_2,
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get(
"scale", None) if cross_attention_kwargs is not None else None
)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
control_images = []
for image_ in controlnet_images:
image_ = self.prepare_image(
image=image_,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=prompt_embeds.dtype,
do_classifier_free_guidance=do_classifier_free_guidance
)
control_images.append(image_)
control_scales = []
scales = [1.0, ] * 10
if guess_mode:
scales = torch.logspace(-1, 0, 10).tolist()
for scale in controlnet_scale:
scales_ = [d * scale for d in scales]
control_scales.append(scales_)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet_in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Prepare added time ids & embeddings
add_text_embeds = pooled_prompt_embeds
add_time_ids = list(
original_size + crops_coords_top_left + target_size)
add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype)
if do_classifier_free_guidance:
prompt_embeds = torch.cat(
[negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat(
[negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(
batch_size * num_images_per_prompt, 1)
# 8. Denoising loop
num_warmup_steps = max(
len(timesteps) - num_inference_steps * self.scheduler.order, 0)
# 7.1 Apply denoising_end
if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1:
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (denoising_end * self.scheduler.config.num_train_timesteps)
)
)
num_inference_steps = len(
list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
timesteps = timesteps[:num_inference_steps]
aug_emb = self._get_aug_emb(
self.add_embedding, add_time_ids, add_text_embeds, prompt_embeds.dtype)
controlnet_aug_embs = []
for controlnet_name in controlnet_names:
controlnet_aug_embs.append(self._get_aug_emb(self.controlnet_add_embedding[controlnet_name],
add_time_ids, add_text_embeds, prompt_embeds.dtype))
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat(
[latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t)
latent_model_input = latent_model_input.permute(
0, 2, 3, 1).contiguous()
noise_pred = self.unet.forward(
latent_model_input, prompt_embeds, t, aug_emb,
controlnet_names, control_images, controlnet_aug_embs, control_scales, guess_mode).permute(0, 3, 1, 2)
# print(noise_pred)
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * \
(noise_pred_text - noise_pred_uncond)
if do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(
noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# make sure the VAE is in float32 mode, as it overflows in float16
# if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
# self.upcast_vae()
# latents = latents.to(
# next(iter(self.vae.post_quant_conv.parameters())).dtype)
# # latents = latents.to(torch.float32)
# if output_type == "latent":
# return latents
# np.save(f"/workspace/latents.npy", latents.detach().cpu().numpy())
# image = self.vae.decode(
# latents / self.vae.config.scaling_factor, return_dict=False)[0]
image = self.vae.decode(1 / self.vae.scaling_factor * latents)
image = self.image_processor.postprocess(
image, output_type=output_type)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
return image