add code
Browse files- .gitattributes +1 -0
- lyraSD/__init__.py +1 -0
- lyraSD/inference.py +89 -0
- lyraSD/muse_trt/__init__.py +10 -0
- lyraSD/muse_trt/libnvinfer_plugin.so +3 -0
- lyraSD/muse_trt/models.py +815 -0
- lyraSD/muse_trt/sd_img2img.py +365 -0
- lyraSD/muse_trt/sd_text2img.py +290 -0
- lyraSD/muse_trt/super.py +64 -0
- lyraSD/muse_trt/utilities.py +536 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
lyraSD/muse_trt/libnvinfer_plugin.so filter=lfs diff=lfs merge=lfs -text
|
lyraSD/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .inference import LyraSD
|
lyraSD/inference.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from PIL import Image
|
3 |
+
from .muse_trt import TRTStableDiffusionText2ImgPipeline
|
4 |
+
from .muse_trt import TRTStableDiffusionImg2ImgPipeline
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
+
class LyraSD(object):
|
9 |
+
def __init__(self, sd_mode, engine_dir,o_height=512, o_width=512, device="cuda:0"):
|
10 |
+
self.sd_mode = sd_mode
|
11 |
+
self.device = device
|
12 |
+
self.o_height = o_height
|
13 |
+
self.o_width = o_width
|
14 |
+
if self.sd_mode == "text2img":
|
15 |
+
self.pipeline = TRTStableDiffusionText2ImgPipeline(
|
16 |
+
engine_dir = engine_dir,
|
17 |
+
o_height = o_height,
|
18 |
+
o_width = o_width,
|
19 |
+
device=device
|
20 |
+
)
|
21 |
+
elif self.sd_mode == "img2img":
|
22 |
+
self.pipeline = TRTStableDiffusionImg2ImgPipeline(
|
23 |
+
engine_dir = engine_dir,
|
24 |
+
o_height = o_height,
|
25 |
+
o_width = o_width,
|
26 |
+
device=device
|
27 |
+
)
|
28 |
+
else:
|
29 |
+
raise ValueError("Invalid sd_mode: {}".format(self.sd_mode))
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
def inference(self, prompt,
|
34 |
+
image=None,
|
35 |
+
save_dir="./output",
|
36 |
+
save_basename="sd-",
|
37 |
+
negative_prompts='',
|
38 |
+
strength=0.3,
|
39 |
+
height=None,
|
40 |
+
width =None,
|
41 |
+
num_images_per_prompt=1,
|
42 |
+
num_inference_steps=50,
|
43 |
+
guidance_scale=7.5,
|
44 |
+
use_super=False,
|
45 |
+
):
|
46 |
+
|
47 |
+
if self.sd_mode=="text2img" and prompt is None:
|
48 |
+
raise ValueError("prompt must be set on text2img mode")
|
49 |
+
|
50 |
+
if self.sd_mode=="img2img" and image is None:
|
51 |
+
raise ValueError("image must be set on img2img mode")
|
52 |
+
|
53 |
+
save_basename += f"{self.sd_mode}"
|
54 |
+
if height is None:
|
55 |
+
height = self.o_height
|
56 |
+
if width is None:
|
57 |
+
width = self.o_width
|
58 |
+
|
59 |
+
# this version model doen't support batch mode.
|
60 |
+
if not isinstance(prompt, list):
|
61 |
+
prompt = [prompt]
|
62 |
+
if len(prompt) > 1:
|
63 |
+
raise ValueError("current model dosen't support multi prompts")
|
64 |
+
if self.sd_mode=="text2img":
|
65 |
+
result_image = self.pipeline(prompt=prompt, negative_prompt=negative_prompts,
|
66 |
+
num_inference_steps= num_inference_steps,
|
67 |
+
num_images_per_prompt=num_images_per_prompt,
|
68 |
+
guidance_scale=guidance_scale,
|
69 |
+
height=height,
|
70 |
+
width=width,
|
71 |
+
use_super=use_super)
|
72 |
+
elif self.sd_mode=="img2img":
|
73 |
+
result_image = self.pipeline(prompt=prompt,
|
74 |
+
image=image,
|
75 |
+
negative_prompt=negative_prompts,
|
76 |
+
strength = strength,
|
77 |
+
num_inference_steps= num_inference_steps,
|
78 |
+
num_images_per_prompt=num_images_per_prompt,
|
79 |
+
guidance_scale=guidance_scale,
|
80 |
+
height=height,
|
81 |
+
width=width,
|
82 |
+
use_super=use_super)
|
83 |
+
|
84 |
+
|
85 |
+
for i in range(result_image.shape[0]):
|
86 |
+
result_image = Image.fromarray(np.uint8(result_image[i]))
|
87 |
+
result_image.save(os.path.join(save_dir, save_basename + "-{}.jpg".format(i)))
|
88 |
+
|
89 |
+
return result_image
|
lyraSD/muse_trt/__init__.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ctypes
|
2 |
+
import os
|
3 |
+
|
4 |
+
current_workdir = os.path.dirname(__file__)
|
5 |
+
|
6 |
+
ctypes.cdll.LoadLibrary(os.path.join(current_workdir, "libnvinfer_plugin.so"))
|
7 |
+
|
8 |
+
from .sd_img2img import TRTStableDiffusionImg2ImgPipeline
|
9 |
+
from .sd_text2img import TRTStableDiffusionText2ImgPipeline
|
10 |
+
from .super import SuperX4TRTInfer
|
lyraSD/muse_trt/libnvinfer_plugin.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53cbcc8a47524652bb8e0399a2fbbcfc0b785f11bdc491bbb6a71e4b888ee124
|
3 |
+
size 85198184
|
lyraSD/muse_trt/models.py
ADDED
@@ -0,0 +1,815 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""models components"""
|
2 |
+
from collections import OrderedDict
|
3 |
+
from copy import deepcopy
|
4 |
+
from typing import Any, Dict, Optional, Union
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from cuda import cudart
|
9 |
+
from diffusers import ControlNetModel
|
10 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn import functional as F
|
13 |
+
from transformers import CLIPTextModel
|
14 |
+
|
15 |
+
|
16 |
+
class BaseModel():
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
local_model_path=None,
|
20 |
+
hf_token=None,
|
21 |
+
text_maxlen=77,
|
22 |
+
embedding_dim=768,
|
23 |
+
fp16=False,
|
24 |
+
device='cuda',
|
25 |
+
verbose=True,
|
26 |
+
max_batch_size=16
|
27 |
+
):
|
28 |
+
self.fp16 = fp16
|
29 |
+
self.device = device
|
30 |
+
self.verbose = verbose
|
31 |
+
self.hf_token = hf_token
|
32 |
+
self.local_model_path = local_model_path
|
33 |
+
|
34 |
+
# Defaults
|
35 |
+
self.text_maxlen = text_maxlen
|
36 |
+
self.embedding_dim = embedding_dim
|
37 |
+
self.min_batch = 1
|
38 |
+
self.max_batch = max_batch_size
|
39 |
+
self.min_latent_shape = 256 // 8 # min image resolution: 256x256
|
40 |
+
self.max_latent_shape = 1024 // 8 # max image resolution: 1024x1024
|
41 |
+
|
42 |
+
def get_model(self):
|
43 |
+
pass
|
44 |
+
|
45 |
+
def get_input_names(self):
|
46 |
+
pass
|
47 |
+
|
48 |
+
def get_output_names(self):
|
49 |
+
pass
|
50 |
+
|
51 |
+
def get_dynamic_axes(self):
|
52 |
+
return None
|
53 |
+
|
54 |
+
def get_sample_input(self, batch_size, image_height, image_width):
|
55 |
+
pass
|
56 |
+
|
57 |
+
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
|
58 |
+
return None
|
59 |
+
|
60 |
+
def get_shape_dict(self, batch_size, image_height, image_width):
|
61 |
+
return None
|
62 |
+
|
63 |
+
|
64 |
+
def check_dims(self, batch_size, image_height, image_width):
|
65 |
+
assert batch_size >= self.min_batch and batch_size <= self.max_batch
|
66 |
+
assert image_height % 8 == 0 or image_width % 8 == 0
|
67 |
+
latent_height = image_height // 8
|
68 |
+
latent_width = image_width // 8
|
69 |
+
assert latent_height >= self.min_latent_shape and latent_height <= self.max_latent_shape
|
70 |
+
assert latent_width >= self.min_latent_shape and latent_width <= self.max_latent_shape
|
71 |
+
return (latent_height, latent_width)
|
72 |
+
|
73 |
+
def get_minmax_dims(self, batch_size, image_height, image_width, static_batch, static_shape):
|
74 |
+
min_batch = batch_size if static_batch else self.min_batch
|
75 |
+
max_batch = batch_size if static_batch else self.max_batch
|
76 |
+
latent_height = image_height // 8
|
77 |
+
latent_width = image_width // 8
|
78 |
+
min_latent_height = latent_height if static_shape else self.min_latent_shape
|
79 |
+
max_latent_height = latent_height if static_shape else self.max_latent_shape
|
80 |
+
min_latent_width = latent_width if static_shape else self.min_latent_shape
|
81 |
+
max_latent_width = latent_width if static_shape else self.max_latent_shape
|
82 |
+
return (min_batch, max_batch, min_latent_height, max_latent_height, min_latent_width, max_latent_width)
|
83 |
+
|
84 |
+
|
85 |
+
class CLIP(BaseModel):
|
86 |
+
def get_model(self):
|
87 |
+
if self.hf_token is None and self.local_model_path is not None:
|
88 |
+
clip_model = CLIPTextModel.from_pretrained(
|
89 |
+
self.local_model_path, subfolder="text_encoder").to(self.device)
|
90 |
+
else:
|
91 |
+
clip_model = CLIPTextModel.from_pretrained(
|
92 |
+
"openai/clip-vit-large-patch14").to(self.device)
|
93 |
+
return clip_model
|
94 |
+
|
95 |
+
def get_input_names(self):
|
96 |
+
return ['input_ids']
|
97 |
+
|
98 |
+
def get_output_names(self):
|
99 |
+
return ['text_embeddings', 'pooler_output']
|
100 |
+
|
101 |
+
def get_dynamic_axes(self):
|
102 |
+
return {
|
103 |
+
'input_ids': {0: 'B'},
|
104 |
+
'text_embeddings': {0: 'B'}
|
105 |
+
}
|
106 |
+
|
107 |
+
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
|
108 |
+
self.check_dims(batch_size, image_height, image_width)
|
109 |
+
min_batch, max_batch, _, _, _, _ = self.get_minmax_dims(
|
110 |
+
batch_size, image_height, image_width, static_batch, static_shape)
|
111 |
+
return {
|
112 |
+
'input_ids': [(min_batch, self.text_maxlen), (batch_size, self.text_maxlen), (max_batch, self.text_maxlen)]
|
113 |
+
}
|
114 |
+
|
115 |
+
def get_shape_dict(self, batch_size, image_height, image_width):
|
116 |
+
self.check_dims(batch_size, image_height, image_width)
|
117 |
+
return {
|
118 |
+
'input_ids': (batch_size, self.text_maxlen),
|
119 |
+
'text_embeddings': (batch_size, self.text_maxlen, self.embedding_dim)
|
120 |
+
}
|
121 |
+
|
122 |
+
def get_sample_input(self, batch_size, image_height, image_width):
|
123 |
+
self.check_dims(batch_size, image_height, image_width)
|
124 |
+
return torch.zeros(batch_size, self.text_maxlen, dtype=torch.int32, device=self.device)
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
class UNet(BaseModel):
|
129 |
+
def get_model(self):
|
130 |
+
model_opts = {'revision': 'fp16',
|
131 |
+
'torch_dtype': torch.float16} if self.fp16 else {}
|
132 |
+
print(model_opts)
|
133 |
+
if self.hf_token is None and self.local_model_path is not None:
|
134 |
+
unet_model = UNet2DConditionModel.from_pretrained(
|
135 |
+
self.local_model_path, subfolder="unet",
|
136 |
+
**model_opts
|
137 |
+
).to(self.device)
|
138 |
+
else:
|
139 |
+
unet_model = UNet2DConditionModel.from_pretrained(
|
140 |
+
"CompVis/stable-diffusion-v1-4",
|
141 |
+
subfolder="unet",
|
142 |
+
use_auth_token=self.hf_token,
|
143 |
+
**model_opts).to(self.device)
|
144 |
+
return unet_model
|
145 |
+
|
146 |
+
def get_input_names(self):
|
147 |
+
return ['sample', 'timestep', 'encoder_hidden_states']
|
148 |
+
|
149 |
+
def get_output_names(self):
|
150 |
+
return ['latent']
|
151 |
+
|
152 |
+
def get_dynamic_axes(self):
|
153 |
+
return {
|
154 |
+
'sample': {0: '2B', 2: 'H', 3: 'W'},
|
155 |
+
'encoder_hidden_states': {0: '2B'},
|
156 |
+
'latent': {0: '2B', 2: 'H', 3: 'W'}
|
157 |
+
}
|
158 |
+
|
159 |
+
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
|
160 |
+
latent_height, latent_width = self.check_dims(
|
161 |
+
batch_size, image_height, image_width)
|
162 |
+
min_batch, max_batch, min_latent_height, max_latent_height, min_latent_width, max_latent_width = \
|
163 |
+
self.get_minmax_dims(batch_size, image_height,
|
164 |
+
image_width, static_batch, static_shape)
|
165 |
+
return {
|
166 |
+
'sample': [(2*min_batch, 4, min_latent_height, min_latent_width), (2*batch_size, 4, latent_height, latent_width), (2*max_batch, 4, max_latent_height, max_latent_width)],
|
167 |
+
'encoder_hidden_states': [(2*min_batch, self.text_maxlen, self.embedding_dim), (2*batch_size, self.text_maxlen, self.embedding_dim), (2*max_batch, self.text_maxlen, self.embedding_dim)]
|
168 |
+
}
|
169 |
+
|
170 |
+
def get_shape_dict(self, batch_size, image_height, image_width):
|
171 |
+
latent_height, latent_width = self.check_dims(
|
172 |
+
batch_size, image_height, image_width)
|
173 |
+
return {
|
174 |
+
'sample': (2*batch_size, 4, latent_height, latent_width),
|
175 |
+
'encoder_hidden_states': (2*batch_size, self.text_maxlen, self.embedding_dim),
|
176 |
+
'latent': (2*batch_size, 4, latent_height, latent_width)
|
177 |
+
}
|
178 |
+
|
179 |
+
def get_sample_input(self, batch_size, image_height, image_width):
|
180 |
+
latent_height, latent_width = self.check_dims(
|
181 |
+
batch_size, image_height, image_width)
|
182 |
+
dtype = torch.float16 if self.fp16 else torch.float32
|
183 |
+
return (
|
184 |
+
torch.randn(2*batch_size, 4, latent_height, latent_width,
|
185 |
+
dtype=torch.float32, device=self.device),
|
186 |
+
torch.tensor([1.], dtype=torch.float32, device=self.device),
|
187 |
+
torch.randn(2*batch_size, self.text_maxlen,
|
188 |
+
self.embedding_dim, dtype=dtype, device=self.device)
|
189 |
+
)
|
190 |
+
|
191 |
+
class VAEEncoderModule(nn.Module):
|
192 |
+
def __init__(self, local_model_path, device) -> None:
|
193 |
+
super().__init__()
|
194 |
+
self.vae = AutoencoderKL.from_pretrained(
|
195 |
+
local_model_path, subfolder="vae"
|
196 |
+
).to(device)
|
197 |
+
|
198 |
+
def forward(self, x):
|
199 |
+
h = self.vae.encoder(x)
|
200 |
+
moments = self.vae.quant_conv(h)
|
201 |
+
return moments
|
202 |
+
|
203 |
+
|
204 |
+
class VAEEncoder(BaseModel):
|
205 |
+
def get_model(self):
|
206 |
+
vae_encoder = VAEEncoderModule(self.local_model_path, self.device)
|
207 |
+
return vae_encoder
|
208 |
+
|
209 |
+
def get_input_names(self):
|
210 |
+
return ['images']
|
211 |
+
|
212 |
+
def get_output_names(self):
|
213 |
+
return ['latent']
|
214 |
+
|
215 |
+
def get_dynamic_axes(self):
|
216 |
+
return {
|
217 |
+
'images': {0: 'B', 2: '8H', 3: '8W'},
|
218 |
+
'latent': {0: 'B', 2: 'H', 3: 'W'}
|
219 |
+
}
|
220 |
+
|
221 |
+
def check_dims(self, batch_size, image_height, image_width):
|
222 |
+
assert batch_size >= self.min_batch and batch_size <= self.max_batch
|
223 |
+
assert image_height % 8 == 0 or image_width % 8 == 0
|
224 |
+
latent_height = image_height // 8
|
225 |
+
latent_width = image_width // 8
|
226 |
+
assert latent_height >= self.min_latent_shape and latent_height <= self.max_latent_shape
|
227 |
+
assert latent_width >= self.min_latent_shape and latent_width <= self.max_latent_shape
|
228 |
+
return (image_height, image_width)
|
229 |
+
|
230 |
+
def get_minmax_dims(self, batch_size, image_height, image_width, static_batch, static_shape):
|
231 |
+
min_batch = batch_size if static_batch else self.min_batch
|
232 |
+
max_batch = batch_size if static_batch else self.max_batch
|
233 |
+
min_image_height = image_height if static_shape else self.min_latent_shape
|
234 |
+
max_image_height = image_height if static_shape else self.max_latent_shape
|
235 |
+
min_image_width = image_width if static_shape else self.min_latent_shape
|
236 |
+
max_image_width = image_width if static_shape else self.max_latent_shape
|
237 |
+
return (min_batch, max_batch, min_image_height, max_image_height, min_image_width, max_image_width)
|
238 |
+
|
239 |
+
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
|
240 |
+
image_height, image_width = self.check_dims(
|
241 |
+
batch_size, image_height, image_width)
|
242 |
+
min_batch, max_batch, min_image_height, max_image_height, min_image_width, max_image_width = \
|
243 |
+
self.get_minmax_dims(batch_size, image_height,
|
244 |
+
image_width, static_batch, static_shape)
|
245 |
+
return {
|
246 |
+
'images': [(min_batch, 3, min_image_height, min_image_width), (batch_size, 3, image_height, image_width), (max_batch, 3, max_image_height, max_image_width)]
|
247 |
+
}
|
248 |
+
|
249 |
+
def get_shape_dict(self, batch_size, image_height, image_width):
|
250 |
+
image_height, image_width = self.check_dims(
|
251 |
+
batch_size, image_height, image_width)
|
252 |
+
return {
|
253 |
+
'images': (batch_size, 3, image_height, image_width),
|
254 |
+
'latent': (batch_size, 8, image_height//8, image_width//8),
|
255 |
+
}
|
256 |
+
|
257 |
+
def get_sample_input(self, batch_size, image_height, image_width):
|
258 |
+
image_height, image_width = self.check_dims(
|
259 |
+
batch_size, image_height, image_width)
|
260 |
+
return torch.randn(batch_size, 3, image_height, image_width, dtype=torch.float32, device=self.device)
|
261 |
+
|
262 |
+
def optimize(self, onnx_graph, minimal_optimization=False):
|
263 |
+
enable_optimization = not minimal_optimization
|
264 |
+
|
265 |
+
# Decompose InstanceNormalization into primitive Ops
|
266 |
+
bRemoveInstanceNorm = enable_optimization
|
267 |
+
# Remove Cast Node to optimize Attention block
|
268 |
+
bRemoveCastNode = enable_optimization
|
269 |
+
# Insert GroupNormalization Plugin
|
270 |
+
bGroupNormPlugin = enable_optimization
|
271 |
+
|
272 |
+
opt = Optimizer(onnx_graph, verbose=self.verbose)
|
273 |
+
opt.info('VAE Encoder: original')
|
274 |
+
|
275 |
+
if bRemoveInstanceNorm:
|
276 |
+
num_instancenorm_replaced = opt.decompose_instancenorms()
|
277 |
+
opt.info('VAE Encoder: replaced ' +
|
278 |
+
str(num_instancenorm_replaced)+' InstanceNorms')
|
279 |
+
|
280 |
+
if bRemoveCastNode:
|
281 |
+
num_casts_removed = opt.remove_casts()
|
282 |
+
opt.info('VAE Encoder: removed '+str(num_casts_removed)+' casts')
|
283 |
+
|
284 |
+
opt.cleanup()
|
285 |
+
opt.info('VAE Encoder: cleanup')
|
286 |
+
opt.fold_constants()
|
287 |
+
opt.info('VAE Encoder: fold constants')
|
288 |
+
opt.infer_shapes()
|
289 |
+
opt.info('VAE Encoder: shape inference')
|
290 |
+
|
291 |
+
if bGroupNormPlugin:
|
292 |
+
num_groupnorm_inserted = opt.insert_groupnorm_plugin()
|
293 |
+
opt.info('VAE Encoder: inserted '+str(num_groupnorm_inserted) +
|
294 |
+
' GroupNorm plugins')
|
295 |
+
|
296 |
+
onnx_opt_graph = opt.cleanup(return_onnx=True)
|
297 |
+
opt.info('VAE Encoder: final')
|
298 |
+
return onnx_opt_graph
|
299 |
+
|
300 |
+
|
301 |
+
class VAEDecoder(BaseModel):
|
302 |
+
def get_model(self):
|
303 |
+
if self.hf_token is None and self.local_model_path is not None:
|
304 |
+
vae = AutoencoderKL.from_pretrained(
|
305 |
+
self.local_model_path, subfolder="vae"
|
306 |
+
).to(self.device)
|
307 |
+
else:
|
308 |
+
vae = AutoencoderKL.from_pretrained(
|
309 |
+
"CompVis/stable-diffusion-v1-4",
|
310 |
+
subfolder="vae",
|
311 |
+
use_auth_token=self.hf_token).to(self.device)
|
312 |
+
vae.forward = vae.decode
|
313 |
+
return vae
|
314 |
+
|
315 |
+
def get_input_names(self):
|
316 |
+
return ['latent']
|
317 |
+
|
318 |
+
def get_output_names(self):
|
319 |
+
return ['images']
|
320 |
+
|
321 |
+
def get_dynamic_axes(self):
|
322 |
+
return {
|
323 |
+
'latent': {0: 'B', 2: 'H', 3: 'W'},
|
324 |
+
'images': {0: 'B', 2: '8H', 3: '8W'}
|
325 |
+
}
|
326 |
+
|
327 |
+
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
|
328 |
+
latent_height, latent_width = self.check_dims(
|
329 |
+
batch_size, image_height, image_width)
|
330 |
+
min_batch, max_batch, min_latent_height, max_latent_height, min_latent_width, max_latent_width = \
|
331 |
+
self.get_minmax_dims(batch_size, image_height,
|
332 |
+
image_width, static_batch, static_shape)
|
333 |
+
return {
|
334 |
+
'latent': [(min_batch, 4, min_latent_height, min_latent_width), (batch_size, 4, latent_height, latent_width), (max_batch, 4, max_latent_height, max_latent_width)]
|
335 |
+
}
|
336 |
+
|
337 |
+
def get_shape_dict(self, batch_size, image_height, image_width):
|
338 |
+
latent_height, latent_width = self.check_dims(
|
339 |
+
batch_size, image_height, image_width)
|
340 |
+
return {
|
341 |
+
'latent': (batch_size, 4, latent_height, latent_width),
|
342 |
+
'images': (batch_size, 3, image_height, image_width)
|
343 |
+
}
|
344 |
+
|
345 |
+
def get_sample_input(self, batch_size, image_height, image_width):
|
346 |
+
latent_height, latent_width = self.check_dims(
|
347 |
+
batch_size, image_height, image_width)
|
348 |
+
return torch.randn(batch_size, 4, latent_height, latent_width, dtype=torch.float32, device=self.device)
|
349 |
+
|
350 |
+
def optimize(self, onnx_graph, minimal_optimization=False):
|
351 |
+
enable_optimization = not minimal_optimization
|
352 |
+
|
353 |
+
# Decompose InstanceNormalization into primitive Ops
|
354 |
+
bRemoveInstanceNorm = enable_optimization
|
355 |
+
# Remove Cast Node to optimize Attention block
|
356 |
+
bRemoveCastNode = enable_optimization
|
357 |
+
# Insert GroupNormalization Plugin
|
358 |
+
bGroupNormPlugin = enable_optimization
|
359 |
+
|
360 |
+
opt = Optimizer(onnx_graph, verbose=self.verbose)
|
361 |
+
opt.info('VAE Decoder: original')
|
362 |
+
|
363 |
+
if bRemoveInstanceNorm:
|
364 |
+
num_instancenorm_replaced = opt.decompose_instancenorms()
|
365 |
+
opt.info('VAE Decoder: replaced ' +
|
366 |
+
str(num_instancenorm_replaced)+' InstanceNorms')
|
367 |
+
|
368 |
+
if bRemoveCastNode:
|
369 |
+
num_casts_removed = opt.remove_casts()
|
370 |
+
opt.info('VAE Decoder: removed '+str(num_casts_removed)+' casts')
|
371 |
+
|
372 |
+
opt.cleanup()
|
373 |
+
opt.info('VAE Decoder: cleanup')
|
374 |
+
opt.fold_constants()
|
375 |
+
opt.info('VAE Decoder: fold constants')
|
376 |
+
opt.infer_shapes()
|
377 |
+
opt.info('VAE Decoder: shape inference')
|
378 |
+
|
379 |
+
if bGroupNormPlugin:
|
380 |
+
num_groupnorm_inserted = opt.insert_groupnorm_plugin()
|
381 |
+
opt.info('VAE Decoder: inserted '+str(num_groupnorm_inserted) +
|
382 |
+
' GroupNorm plugins')
|
383 |
+
|
384 |
+
onnx_opt_graph = opt.cleanup(return_onnx=True)
|
385 |
+
opt.info('VAE Decoder: final')
|
386 |
+
return onnx_opt_graph
|
387 |
+
|
388 |
+
|
389 |
+
class SuperModelX4(nn.Module):
|
390 |
+
def __init__(self, model_dir, scale=4, pre_pad=0):
|
391 |
+
super().__init__()
|
392 |
+
self.scale = scale
|
393 |
+
self.pre_pad = pre_pad
|
394 |
+
|
395 |
+
rrdb = RealESRGAN(model_dir=model_dir,
|
396 |
+
model_name="RealESRGAN_x4plus_anime_6B").upsampler.model
|
397 |
+
self.rrdb = rrdb.eval()
|
398 |
+
|
399 |
+
def forward(self, x):
|
400 |
+
x = x / 255.
|
401 |
+
x = F.pad(x, (0, self.pre_pad, 0, self.pre_pad), 'reflect')
|
402 |
+
x = self.rrdb(x)
|
403 |
+
_, _, h, w = x.size()
|
404 |
+
x = x[:, :, 0:h-self.pre_pad * self.scale, 0:w-self.pre_pad*self.scale]
|
405 |
+
x = x.clamp(0, 1)
|
406 |
+
x = (x * 255).round()
|
407 |
+
return x
|
408 |
+
|
409 |
+
|
410 |
+
class SuperResX4():
|
411 |
+
def __init__(
|
412 |
+
self,
|
413 |
+
local_model_path=None,
|
414 |
+
fp16=True,
|
415 |
+
device='cuda',
|
416 |
+
verbose=True,
|
417 |
+
max_batch_size=8
|
418 |
+
):
|
419 |
+
self.fp16 = fp16
|
420 |
+
self.device = device
|
421 |
+
self.verbose = verbose
|
422 |
+
self.local_model_path = local_model_path
|
423 |
+
|
424 |
+
# Defaults
|
425 |
+
self.min_batch = 1
|
426 |
+
self.max_batch = max_batch_size
|
427 |
+
self.min_height = 64
|
428 |
+
self.max_height = 640
|
429 |
+
self.min_width = 64
|
430 |
+
self.max_width = 640
|
431 |
+
|
432 |
+
def get_model(self):
|
433 |
+
model = SuperModelX4(self.local_model_path, scale=4, pre_pad=0).to(device=self.device)
|
434 |
+
if self.fp16:
|
435 |
+
model = model.half()
|
436 |
+
return model
|
437 |
+
|
438 |
+
def get_input_names(self):
|
439 |
+
return ['input_image']
|
440 |
+
|
441 |
+
def get_output_names(self):
|
442 |
+
return ['output_image']
|
443 |
+
|
444 |
+
def get_dynamic_axes(self):
|
445 |
+
return {
|
446 |
+
'input_image': {0: 'B', },
|
447 |
+
'output_image': {0: 'B', }
|
448 |
+
}
|
449 |
+
|
450 |
+
def check_dims(self, batch_size, image_height, image_width):
|
451 |
+
assert batch_size >= self.min_batch and batch_size <= self.max_batch
|
452 |
+
return (image_height, image_width)
|
453 |
+
|
454 |
+
def get_minmax_dims(self, batch_size, image_height, image_width, static_batch, static_shape):
|
455 |
+
min_batch = batch_size if static_batch else self.min_batch
|
456 |
+
max_batch = batch_size if static_batch else self.max_batch
|
457 |
+
min_image_height = image_height if static_shape else self.min_height
|
458 |
+
max_image_height = image_height if static_shape else self.max_height
|
459 |
+
min_image_width = image_width if static_shape else self.min_width
|
460 |
+
max_image_width = image_width if static_shape else self.max_width
|
461 |
+
return (min_batch, max_batch, min_image_height, max_image_height, min_image_width, max_image_width)
|
462 |
+
|
463 |
+
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
|
464 |
+
image_height, image_width = self.check_dims(
|
465 |
+
batch_size, image_height, image_width)
|
466 |
+
min_batch, max_batch, min_image_height, max_image_height, min_image_width, max_image_width = \
|
467 |
+
self.get_minmax_dims(batch_size, image_height,
|
468 |
+
image_width, static_batch, static_shape)
|
469 |
+
return {
|
470 |
+
'input_image': [(min_batch, 3, min_image_height, min_image_width), (batch_size, 3, image_height, image_width), (max_batch, 3, max_image_height, max_image_width)]
|
471 |
+
}
|
472 |
+
|
473 |
+
def get_shape_dict(self, batch_size, image_height, image_width):
|
474 |
+
image_height, image_width = self.check_dims(
|
475 |
+
batch_size, image_height, image_width)
|
476 |
+
return {
|
477 |
+
'input_image': (batch_size, 3, image_height, image_width),
|
478 |
+
'output_image': (batch_size, 3, image_height*4, image_width*4),
|
479 |
+
}
|
480 |
+
|
481 |
+
def get_sample_input(self, batch_size, image_height, image_width):
|
482 |
+
dtype = torch.float16 if self.fp16 else torch.float32
|
483 |
+
image_height, image_width = self.check_dims(
|
484 |
+
batch_size, image_height, image_width)
|
485 |
+
return torch.randn(batch_size, 3, image_height, image_width, dtype=dtype, device=self.device)
|
486 |
+
|
487 |
+
def optimize(self, onnx_graph, minimal_optimization=False):
|
488 |
+
enable_optimization = not minimal_optimization
|
489 |
+
|
490 |
+
# Decompose InstanceNormalization into primitive Ops
|
491 |
+
bRemoveInstanceNorm = enable_optimization
|
492 |
+
# Remove Cast Node to optimize Attention block
|
493 |
+
bRemoveCastNode = enable_optimization
|
494 |
+
# Insert GroupNormalization Plugin
|
495 |
+
bGroupNormPlugin = enable_optimization
|
496 |
+
|
497 |
+
opt = Optimizer(onnx_graph, verbose=self.verbose)
|
498 |
+
opt.info('SuperX4: original')
|
499 |
+
|
500 |
+
if bRemoveInstanceNorm:
|
501 |
+
num_instancenorm_replaced = opt.decompose_instancenorms()
|
502 |
+
opt.info('SuperX4: replaced ' +
|
503 |
+
str(num_instancenorm_replaced)+' InstanceNorms')
|
504 |
+
|
505 |
+
if bRemoveCastNode:
|
506 |
+
num_casts_removed = opt.remove_casts()
|
507 |
+
opt.info('SuperX4: removed '+str(num_casts_removed)+' casts')
|
508 |
+
|
509 |
+
opt.cleanup()
|
510 |
+
opt.info('SuperX4: cleanup')
|
511 |
+
opt.fold_constants()
|
512 |
+
opt.info('SuperX4: fold constants')
|
513 |
+
opt.infer_shapes()
|
514 |
+
opt.info('SuperX4: shape inference')
|
515 |
+
|
516 |
+
if bGroupNormPlugin:
|
517 |
+
num_groupnorm_inserted = opt.insert_groupnorm_plugin()
|
518 |
+
opt.info('SuperX4: inserted '+str(num_groupnorm_inserted) +
|
519 |
+
' GroupNorm plugins')
|
520 |
+
|
521 |
+
onnx_opt_graph = opt.cleanup(return_onnx=True)
|
522 |
+
opt.info('SuperX4: final')
|
523 |
+
return onnx_opt_graph
|
524 |
+
|
525 |
+
|
526 |
+
class FusedControlNetModule(nn.Module):
|
527 |
+
def __init__(self, base_model_dir, control_model_dir, fp16=True) -> None:
|
528 |
+
super().__init__()
|
529 |
+
self.device = 'cuda:0'
|
530 |
+
self.fp16 = fp16
|
531 |
+
model_opts = {'revision': 'fp16',
|
532 |
+
'torch_dtype': torch.float16} if self.fp16 else {}
|
533 |
+
self.base = UNet2DConditionModel.from_pretrained(
|
534 |
+
base_model_dir, subfolder="unet",
|
535 |
+
**model_opts
|
536 |
+
).eval().to(self.device)
|
537 |
+
self.control = ControlNetModel.from_pretrained(
|
538 |
+
control_model_dir,
|
539 |
+
**model_opts
|
540 |
+
).eval().to(self.device)
|
541 |
+
|
542 |
+
def forward(self, sample, timestep, encoder_hidden_states, controlnet_cond):
|
543 |
+
controlnet_conditioning_scale: float = 1.0
|
544 |
+
down_block_res_samples, mid_block_res_sample = self.control(
|
545 |
+
sample,
|
546 |
+
timestep,
|
547 |
+
encoder_hidden_states=encoder_hidden_states,
|
548 |
+
controlnet_cond=controlnet_cond,
|
549 |
+
return_dict=False,
|
550 |
+
)
|
551 |
+
|
552 |
+
down_block_res_samples = [
|
553 |
+
down_block_res_sample * controlnet_conditioning_scale
|
554 |
+
for down_block_res_sample in down_block_res_samples
|
555 |
+
]
|
556 |
+
mid_block_res_sample *= controlnet_conditioning_scale
|
557 |
+
|
558 |
+
# predict the noise residual
|
559 |
+
noise_pred = self.base(
|
560 |
+
sample,
|
561 |
+
timestep,
|
562 |
+
encoder_hidden_states=encoder_hidden_states,
|
563 |
+
down_block_additional_residuals=down_block_res_samples,
|
564 |
+
mid_block_additional_residual=mid_block_res_sample,
|
565 |
+
).sample
|
566 |
+
|
567 |
+
return noise_pred
|
568 |
+
|
569 |
+
|
570 |
+
class FusedControlNet(BaseModel):
|
571 |
+
def __init__(self, local_model_path=None, controlnet_model_path=None, hf_token=None, text_maxlen=77,
|
572 |
+
embedding_dim=768, fp16=False, device='cuda', verbose=True, max_batch_size=16):
|
573 |
+
super().__init__(local_model_path, hf_token, text_maxlen, embedding_dim, fp16, device, verbose, max_batch_size)
|
574 |
+
# if controlnet_model_path is None:
|
575 |
+
# raise ValueError("Must give controlnet_model_path for FusedControlNet to load control net")
|
576 |
+
self.controlnet_model_path = controlnet_model_path
|
577 |
+
self.min_height = 256
|
578 |
+
self.max_height = 1024
|
579 |
+
self.min_width = 256
|
580 |
+
self.max_width = 1024
|
581 |
+
|
582 |
+
def get_minmax_dims(self, batch_size, image_height, image_width, static_batch, static_shape):
|
583 |
+
r = list(super().get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape))
|
584 |
+
min_height = image_height if static_shape else self.min_height
|
585 |
+
max_height = image_height if static_shape else self.max_height
|
586 |
+
min_width = image_width if static_shape else self.min_width
|
587 |
+
max_width = image_width if static_shape else self.max_width
|
588 |
+
r.extend([min_height, max_height, min_width, max_width])
|
589 |
+
return r
|
590 |
+
|
591 |
+
def get_model(self):
|
592 |
+
model = FusedControlNetModule(
|
593 |
+
base_model_dir=self.local_model_path,
|
594 |
+
control_model_dir=self.controlnet_model_path,
|
595 |
+
fp16=self.fp16
|
596 |
+
)
|
597 |
+
return model
|
598 |
+
|
599 |
+
def get_input_names(self):
|
600 |
+
return ['sample', 'timestep', 'encoder_hidden_states', 'controlnet_cond']
|
601 |
+
|
602 |
+
def get_output_names(self):
|
603 |
+
return ['latent']
|
604 |
+
|
605 |
+
def get_dynamic_axes(self):
|
606 |
+
return {
|
607 |
+
'sample': {0: '2B', 2: 'H', 3: 'W'},
|
608 |
+
'encoder_hidden_states': {0: '2B'},
|
609 |
+
'controlnet_cond': {0: '2B', 2: '8H', 3: '8W'}, # controlnet_cond is 8X sample and lantent
|
610 |
+
'latent': {0: '2B', 2: 'H', 3: 'W'}
|
611 |
+
}
|
612 |
+
|
613 |
+
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
|
614 |
+
latent_height, latent_width = self.check_dims(
|
615 |
+
batch_size, image_height, image_width)
|
616 |
+
min_batch, max_batch, min_latent_height, max_latent_height, min_latent_width, max_latent_width, min_height, max_height, min_width, max_width = \
|
617 |
+
self.get_minmax_dims(batch_size, image_height,
|
618 |
+
image_width, static_batch, static_shape)
|
619 |
+
return {
|
620 |
+
'sample': [(2*min_batch, 4, min_latent_height, min_latent_width), (2*batch_size, 4, latent_height, latent_width), (2*max_batch, 4, max_latent_height, max_latent_width)],
|
621 |
+
'encoder_hidden_states': [(2*min_batch, self.text_maxlen, self.embedding_dim), (2*batch_size, self.text_maxlen, self.embedding_dim), (2*max_batch, self.text_maxlen, self.embedding_dim)],
|
622 |
+
'controlnet_cond': [(2*min_batch, 3, min_height, min_width), (2*batch_size, 3, image_height, image_width), (2*max_batch, 3, max_height, max_width)]
|
623 |
+
}
|
624 |
+
|
625 |
+
def get_shape_dict(self, batch_size, image_height, image_width):
|
626 |
+
latent_height, latent_width = self.check_dims(
|
627 |
+
batch_size, image_height, image_width)
|
628 |
+
return {
|
629 |
+
'sample': (2*batch_size, 4, latent_height, latent_width),
|
630 |
+
'encoder_hidden_states': (2*batch_size, self.text_maxlen, self.embedding_dim),
|
631 |
+
'controlnet_cond': (2*batch_size, 3, image_height, image_width),
|
632 |
+
'latent': (2*batch_size, 4, latent_height, latent_width)
|
633 |
+
}
|
634 |
+
|
635 |
+
def get_sample_input(self, batch_size, image_height, image_width):
|
636 |
+
latent_height, latent_width = self.check_dims(
|
637 |
+
batch_size, image_height, image_width)
|
638 |
+
dtype = torch.float16 if self.fp16 else torch.float32
|
639 |
+
return (
|
640 |
+
torch.randn(2*batch_size, 4, latent_height, latent_width,
|
641 |
+
dtype=torch.float32, device=self.device), # sample
|
642 |
+
torch.tensor([1.], dtype=torch.float32, device=self.device), # timestep
|
643 |
+
torch.randn(2*batch_size, self.text_maxlen, # encoder_hidden_states
|
644 |
+
self.embedding_dim, dtype=dtype, device=self.device),
|
645 |
+
torch.randn(2*batch_size, 3, image_height, image_width,
|
646 |
+
dtype=torch.float32, device=self.device) # controlnet_cond
|
647 |
+
)
|
648 |
+
|
649 |
+
def optimize(self, onnx_graph, minimal_optimization=False):
|
650 |
+
class_name = self.__class__.__name__
|
651 |
+
|
652 |
+
enable_optimization = not minimal_optimization
|
653 |
+
|
654 |
+
# Decompose InstanceNormalization into primitive Ops
|
655 |
+
bRemoveInstanceNorm = enable_optimization
|
656 |
+
# Remove Cast Node to optimize Attention block
|
657 |
+
bRemoveCastNode = enable_optimization
|
658 |
+
# Remove parallel Swish ops
|
659 |
+
bRemoveParallelSwish = enable_optimization
|
660 |
+
# Adjust the bias to be the second input to the Add ops
|
661 |
+
bAdjustAddNode = enable_optimization
|
662 |
+
# Change Resize node to take size instead of scale
|
663 |
+
bResizeFix = enable_optimization
|
664 |
+
|
665 |
+
# Common override for disabling all plugins below
|
666 |
+
bDisablePlugins = minimal_optimization
|
667 |
+
# Use multi-head attention Plugin
|
668 |
+
bMHAPlugin = True
|
669 |
+
# Use multi-head cross attention Plugin
|
670 |
+
bMHCAPlugin = True
|
671 |
+
# Insert GroupNormalization Plugin
|
672 |
+
bGroupNormPlugin = True
|
673 |
+
# Insert LayerNormalization Plugin
|
674 |
+
bLayerNormPlugin = True
|
675 |
+
# Insert Split+GeLU Plugin
|
676 |
+
bSplitGeLUPlugin = True
|
677 |
+
# Replace BiasAdd+ResidualAdd+SeqLen2Spatial with plugin
|
678 |
+
bSeqLen2SpatialPlugin = True
|
679 |
+
|
680 |
+
opt = Optimizer(onnx_graph, verbose=self.verbose)
|
681 |
+
opt.info(f'{class_name}: original')
|
682 |
+
|
683 |
+
if bRemoveInstanceNorm:
|
684 |
+
num_instancenorm_replaced = opt.decompose_instancenorms()
|
685 |
+
opt.info(f'{class_name}: replaced ' +
|
686 |
+
str(num_instancenorm_replaced)+' InstanceNorms')
|
687 |
+
|
688 |
+
if bRemoveCastNode:
|
689 |
+
num_casts_removed = opt.remove_casts()
|
690 |
+
opt.info(f'{class_name}: removed '+str(num_casts_removed)+' casts')
|
691 |
+
|
692 |
+
if bRemoveParallelSwish:
|
693 |
+
num_parallel_swish_removed = opt.remove_parallel_swish()
|
694 |
+
opt.info(f'{class_name}: removed ' +
|
695 |
+
str(num_parallel_swish_removed)+' parallel swish ops')
|
696 |
+
|
697 |
+
if bAdjustAddNode:
|
698 |
+
num_adjust_add = opt.adjustAddNode()
|
699 |
+
opt.info(f'{class_name}: adjusted '+str(num_adjust_add)+' adds')
|
700 |
+
|
701 |
+
if bResizeFix:
|
702 |
+
num_resize_fix = opt.resize_fix()
|
703 |
+
opt.info(f'{class_name}: fixed '+str(num_resize_fix)+' resizes')
|
704 |
+
|
705 |
+
opt.cleanup()
|
706 |
+
opt.info(f'{class_name}: cleanup')
|
707 |
+
opt.fold_constants()
|
708 |
+
opt.info(f'{class_name}: fold constants')
|
709 |
+
opt.infer_shapes()
|
710 |
+
opt.info(f'{class_name}: shape inference')
|
711 |
+
|
712 |
+
num_heads = 8
|
713 |
+
if bMHAPlugin and not bDisablePlugins:
|
714 |
+
num_fmha_inserted = opt.insert_fmha_plugin(num_heads)
|
715 |
+
opt.info(f'{class_name}: inserted '+str(num_fmha_inserted)+' fMHA plugins')
|
716 |
+
|
717 |
+
if bMHCAPlugin and not bDisablePlugins:
|
718 |
+
props = cudart.cudaGetDeviceProperties(0)[1]
|
719 |
+
sm = props.major * 10 + props.minor
|
720 |
+
num_fmhca_inserted = opt.insert_fmhca_plugin(num_heads, sm)
|
721 |
+
opt.info(f'{class_name}: inserted '+str(num_fmhca_inserted)+' fMHCA plugins')
|
722 |
+
|
723 |
+
if bGroupNormPlugin and not bDisablePlugins:
|
724 |
+
num_groupnorm_inserted = opt.insert_groupnorm_plugin()
|
725 |
+
opt.info(f'{class_name}: inserted '+str(num_groupnorm_inserted) +
|
726 |
+
' GroupNorm plugins')
|
727 |
+
|
728 |
+
if bLayerNormPlugin and not bDisablePlugins:
|
729 |
+
num_layernorm_inserted = opt.insert_layernorm_plugin()
|
730 |
+
opt.info(f'{class_name}: inserted '+str(num_layernorm_inserted) +
|
731 |
+
' LayerNorm plugins')
|
732 |
+
|
733 |
+
if bSplitGeLUPlugin and not bDisablePlugins:
|
734 |
+
num_splitgelu_inserted = opt.insert_splitgelu_plugin()
|
735 |
+
opt.info(f'{class_name}: inserted '+str(num_splitgelu_inserted) +
|
736 |
+
' SplitGeLU plugins')
|
737 |
+
|
738 |
+
if bSeqLen2SpatialPlugin and not bDisablePlugins:
|
739 |
+
num_seq2spatial_inserted = opt.insert_seq2spatial_plugin()
|
740 |
+
opt.info(f'{class_name}: inserted '+str(num_seq2spatial_inserted) +
|
741 |
+
' SeqLen2Spatial plugins')
|
742 |
+
|
743 |
+
onnx_opt_graph = opt.cleanup(return_onnx=True)
|
744 |
+
opt.info(f'{class_name}: final')
|
745 |
+
return onnx_opt_graph
|
746 |
+
|
747 |
+
|
748 |
+
class ControlNetModule(nn.Module):
|
749 |
+
def __init__(self, control_model_dir, fp16=True) -> None:
|
750 |
+
super().__init__()
|
751 |
+
self.device = 'cuda:0'
|
752 |
+
self.fp16 = fp16
|
753 |
+
model_opts = {'revision': 'fp16',
|
754 |
+
'torch_dtype': torch.float16} if self.fp16 else {}
|
755 |
+
self.control = ControlNetModel.from_pretrained(
|
756 |
+
control_model_dir,
|
757 |
+
**model_opts
|
758 |
+
).eval().to(self.device)
|
759 |
+
|
760 |
+
def forward(self, sample, timestep, encoder_hidden_states, controlnet_cond):
|
761 |
+
controlnet_conditioning_scale: float = 1.0
|
762 |
+
down_block_res_samples, mid_block_res_sample = self.control(
|
763 |
+
sample,
|
764 |
+
timestep,
|
765 |
+
encoder_hidden_states=encoder_hidden_states,
|
766 |
+
controlnet_cond=controlnet_cond,
|
767 |
+
return_dict=False,
|
768 |
+
)
|
769 |
+
down_block_res_samples = [
|
770 |
+
down_block_res_sample * controlnet_conditioning_scale
|
771 |
+
for down_block_res_sample in down_block_res_samples
|
772 |
+
]
|
773 |
+
mid_block_res_sample *= controlnet_conditioning_scale
|
774 |
+
# @vane: currently, only retun mid_blocks_res_sample: (B, 1280, height//8//8, width//8//8)
|
775 |
+
# down_block_res_samples is a tensor tuple that length is 12.
|
776 |
+
# it will be flatten to 12 nodes if we return the down_block_res_samples
|
777 |
+
return mid_block_res_sample
|
778 |
+
|
779 |
+
|
780 |
+
class ControlNet(FusedControlNet):
|
781 |
+
def __init__(self, local_model_path=None, controlnet_model_path=None, hf_token=None, text_maxlen=77,
|
782 |
+
embedding_dim=768, fp16=False, device='cuda', verbose=True, max_batch_size=16):
|
783 |
+
super().__init__(local_model_path, controlnet_model_path, hf_token,
|
784 |
+
text_maxlen, embedding_dim, fp16, device, verbose, max_batch_size)
|
785 |
+
|
786 |
+
def get_model(self):
|
787 |
+
model = ControlNetModule(
|
788 |
+
control_model_dir=self.controlnet_model_path,
|
789 |
+
fp16=self.fp16
|
790 |
+
)
|
791 |
+
return model
|
792 |
+
|
793 |
+
def get_input_names(self):
|
794 |
+
return ['sample', 'timestep', 'encoder_hidden_states', 'controlnet_cond']
|
795 |
+
|
796 |
+
def get_output_names(self):
|
797 |
+
return ['mids']
|
798 |
+
|
799 |
+
def get_dynamic_axes(self):
|
800 |
+
return {
|
801 |
+
'sample': {0: '2B', 2: '8H', 3: '8W'},
|
802 |
+
'encoder_hidden_states': {0: '2B'},
|
803 |
+
'controlnet_cond': {0: '2B', 2: '16H', 3: '16W'},
|
804 |
+
'mids': {0: '2B', 2: 'H', 3: 'W'}
|
805 |
+
}
|
806 |
+
|
807 |
+
def get_shape_dict(self, batch_size, image_height, image_width):
|
808 |
+
latent_height, latent_width = self.check_dims(
|
809 |
+
batch_size, image_height, image_width)
|
810 |
+
return {
|
811 |
+
'sample': (2*batch_size, 4, latent_height, latent_width),
|
812 |
+
'encoder_hidden_states': (2*batch_size, self.text_maxlen, self.embedding_dim),
|
813 |
+
'controlnet_cond': (2*batch_size, 3, image_height, image_width),
|
814 |
+
'mids': (2*batch_size, 1280, latent_height//8, latent_width//8)
|
815 |
+
}
|
lyraSD/muse_trt/sd_img2img.py
ADDED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
StableDiffusion Img2Img Pipeline by TensorRT.
|
3 |
+
It has included SuperResolutionX4 TensorRT Engine.
|
4 |
+
|
5 |
+
Inspired by: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py
|
6 |
+
https://developer.nvidia.com/tensorrt
|
7 |
+
"""
|
8 |
+
|
9 |
+
import inspect
|
10 |
+
import os
|
11 |
+
from typing import List, Optional, Union
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import PIL.Image
|
15 |
+
import tensorrt as trt
|
16 |
+
import torch
|
17 |
+
import time
|
18 |
+
from diffusers import AutoencoderKL
|
19 |
+
from diffusers.schedulers import DPMSolverMultistepScheduler
|
20 |
+
from diffusers.models.vae import DiagonalGaussianDistribution
|
21 |
+
from diffusers.utils import PIL_INTERPOLATION, randn_tensor
|
22 |
+
from polygraphy import cuda
|
23 |
+
from transformers import CLIPTokenizer
|
24 |
+
|
25 |
+
from .models import CLIP, UNet, VAEDecoder, VAEEncoder
|
26 |
+
from .super import SuperX4TRTInfer
|
27 |
+
from .utilities import TRT_LOGGER, Engine
|
28 |
+
|
29 |
+
|
30 |
+
def preprocess(image):
|
31 |
+
if isinstance(image, torch.Tensor):
|
32 |
+
return image
|
33 |
+
elif isinstance(image, PIL.Image.Image):
|
34 |
+
image = [image]
|
35 |
+
|
36 |
+
if isinstance(image[0], PIL.Image.Image):
|
37 |
+
w, h = image[0].size
|
38 |
+
w, h = map(lambda x: x - x % 8, (w, h)) # resize to integer multiple of 8
|
39 |
+
|
40 |
+
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
|
41 |
+
image = np.concatenate(image, axis=0)
|
42 |
+
image = np.array(image).astype(np.float32) / 255.0
|
43 |
+
image = image.transpose(0, 3, 1, 2)
|
44 |
+
image = 2.0 * image - 1.0
|
45 |
+
image = torch.from_numpy(image)
|
46 |
+
elif isinstance(image[0], torch.Tensor):
|
47 |
+
image = torch.cat(image, dim=0)
|
48 |
+
return image
|
49 |
+
|
50 |
+
|
51 |
+
class TRTStableDiffusionImg2ImgPipeline:
|
52 |
+
def __init__(self, engine_dir: str, o_height: int = 1300, o_width: int = 750, device: str = 'cuda:0'):
|
53 |
+
self.device = torch.device(device)
|
54 |
+
super().__init__()
|
55 |
+
self.vae = AutoencoderKL.from_pretrained(
|
56 |
+
os.path.join(engine_dir, 'vae'),
|
57 |
+
torch_dtype=torch.float16
|
58 |
+
).to(self.device)
|
59 |
+
|
60 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(
|
61 |
+
os.path.join(engine_dir, 'tokenizer')
|
62 |
+
)
|
63 |
+
self.scheduler = DPMSolverMultistepScheduler.from_pretrained(
|
64 |
+
os.path.join(engine_dir, 'scheduler')
|
65 |
+
)
|
66 |
+
|
67 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
68 |
+
self.trt_torch_models_cls = {
|
69 |
+
'clip': CLIP(),
|
70 |
+
'unet_fp16': UNet(),
|
71 |
+
'vae-encoder': VAEEncoder(),
|
72 |
+
'vae-decoder': VAEDecoder()
|
73 |
+
}
|
74 |
+
|
75 |
+
self.engine = {}
|
76 |
+
# Build engines
|
77 |
+
for model_name, _ in self.trt_torch_models_cls.items():
|
78 |
+
engine = Engine(model_name, engine_dir)
|
79 |
+
self.engine[model_name] = engine
|
80 |
+
# Separate iteration to activate engines
|
81 |
+
for model_name, _ in self.trt_torch_models_cls.items():
|
82 |
+
self.engine[model_name].activate()
|
83 |
+
self.stream = cuda.Stream()
|
84 |
+
|
85 |
+
self.super = SuperX4TRTInfer(
|
86 |
+
engine_dir,
|
87 |
+
model_name='superx4.plan',
|
88 |
+
fp16=True,
|
89 |
+
o_height=o_height,
|
90 |
+
o_width=o_width
|
91 |
+
)
|
92 |
+
|
93 |
+
def runEngine(self, model_name, feed_dict):
|
94 |
+
engine = self.engine[model_name]
|
95 |
+
return engine.infer(feed_dict, self.stream)
|
96 |
+
|
97 |
+
def _torch_decode_latents(self, latents):
|
98 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
99 |
+
image = self.vae.decode(latents).sample
|
100 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
101 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
102 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
103 |
+
image = (image * 255).round()
|
104 |
+
return image
|
105 |
+
|
106 |
+
def _trt_decode_latents(self, latents):
|
107 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
108 |
+
sample_inp = cuda.DeviceView(
|
109 |
+
ptr=latents.data_ptr(), shape=latents.shape, dtype=np.float32)
|
110 |
+
image = self.runEngine('vae-decoder', {"latent": sample_inp})['images']
|
111 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
112 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
113 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
114 |
+
image = (image * 255).round()
|
115 |
+
|
116 |
+
return image
|
117 |
+
|
118 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
119 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
120 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
121 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
122 |
+
# and should be between [0, 1]
|
123 |
+
|
124 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
125 |
+
extra_step_kwargs = {}
|
126 |
+
if accepts_eta:
|
127 |
+
extra_step_kwargs["eta"] = eta
|
128 |
+
|
129 |
+
# check if the scheduler accepts generator
|
130 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
131 |
+
if accepts_generator:
|
132 |
+
extra_step_kwargs["generator"] = generator
|
133 |
+
return extra_step_kwargs
|
134 |
+
|
135 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
136 |
+
# get the original timestep using init_timestep
|
137 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
138 |
+
|
139 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
140 |
+
timesteps = self.scheduler.timesteps[t_start:]
|
141 |
+
|
142 |
+
return timesteps, num_inference_steps - t_start
|
143 |
+
|
144 |
+
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
|
145 |
+
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
146 |
+
raise ValueError(
|
147 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
148 |
+
)
|
149 |
+
|
150 |
+
image = image.to(device=device, dtype=dtype)
|
151 |
+
|
152 |
+
batch_size = batch_size * num_images_per_prompt
|
153 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
154 |
+
raise ValueError(
|
155 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
156 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
157 |
+
)
|
158 |
+
|
159 |
+
if isinstance(generator, list):
|
160 |
+
init_latents = [
|
161 |
+
self.vae.encode(image[i: i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
|
162 |
+
]
|
163 |
+
init_latents = torch.cat(init_latents, dim=0)
|
164 |
+
else:
|
165 |
+
init_latents = self.vae.encode(image).latent_dist.sample(generator)
|
166 |
+
|
167 |
+
init_latents = self.vae.config.scaling_factor * init_latents
|
168 |
+
|
169 |
+
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
170 |
+
raise ValueError(
|
171 |
+
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
172 |
+
)
|
173 |
+
else:
|
174 |
+
init_latents = torch.cat([init_latents], dim=0)
|
175 |
+
|
176 |
+
shape = init_latents.shape
|
177 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
178 |
+
|
179 |
+
# get latents
|
180 |
+
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
181 |
+
latents = init_latents
|
182 |
+
|
183 |
+
return latents
|
184 |
+
|
185 |
+
def _default_height_width(self, height, width, image):
|
186 |
+
if isinstance(image, list):
|
187 |
+
image = image[0]
|
188 |
+
|
189 |
+
if height is None:
|
190 |
+
if isinstance(image, PIL.Image.Image):
|
191 |
+
height = image.height
|
192 |
+
elif isinstance(image, torch.Tensor):
|
193 |
+
height = image.shape[3]
|
194 |
+
|
195 |
+
height = (height // 8) * 8 # round down to nearest multiple of 8
|
196 |
+
|
197 |
+
if width is None:
|
198 |
+
if isinstance(image, PIL.Image.Image):
|
199 |
+
width = image.width
|
200 |
+
elif isinstance(image, torch.Tensor):
|
201 |
+
width = image.shape[2]
|
202 |
+
|
203 |
+
width = (width // 8) * 8 # round down to nearest multiple of 8
|
204 |
+
|
205 |
+
return height, width
|
206 |
+
|
207 |
+
def _trt_encode_prompt(self, prompt, negative_prompt, num_images_per_prompt,):
|
208 |
+
# Tokenize input
|
209 |
+
text_input_ids = self.tokenizer(
|
210 |
+
prompt,
|
211 |
+
padding="max_length",
|
212 |
+
max_length=self.tokenizer.model_max_length,
|
213 |
+
return_tensors="pt",
|
214 |
+
).input_ids.type(torch.int32).to(self.device)
|
215 |
+
|
216 |
+
# CLIP text encoder
|
217 |
+
text_input_ids_inp = cuda.DeviceView(
|
218 |
+
ptr=text_input_ids.data_ptr(), shape=text_input_ids.shape, dtype=np.int32
|
219 |
+
)
|
220 |
+
text_embeddings = self.runEngine('clip', {"input_ids": text_input_ids_inp})['text_embeddings']
|
221 |
+
|
222 |
+
# Duplicate text embeddings for each generation per prompt
|
223 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
224 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
225 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
226 |
+
|
227 |
+
max_length = text_input_ids.shape[-1]
|
228 |
+
uncond_input_ids = self.tokenizer(
|
229 |
+
negative_prompt,
|
230 |
+
padding="max_length",
|
231 |
+
max_length=max_length,
|
232 |
+
truncation=True,
|
233 |
+
return_tensors="pt",
|
234 |
+
).input_ids.type(torch.int32).to(self.device)
|
235 |
+
uncond_input_ids_inp = cuda.DeviceView(
|
236 |
+
ptr=uncond_input_ids.data_ptr(), shape=uncond_input_ids.shape, dtype=np.int32)
|
237 |
+
uncond_embeddings = self.runEngine('clip', {"input_ids": uncond_input_ids_inp})['text_embeddings']
|
238 |
+
|
239 |
+
# Duplicate unconditional embeddings for each generation per prompt
|
240 |
+
seq_len = uncond_embeddings.shape[1]
|
241 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
|
242 |
+
uncond_embeddings = uncond_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
243 |
+
|
244 |
+
# Concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes for classifier free guidance
|
245 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
246 |
+
text_embeddings = text_embeddings.to(dtype=torch.float16)
|
247 |
+
|
248 |
+
return text_embeddings
|
249 |
+
|
250 |
+
@torch.no_grad()
|
251 |
+
def __call__(
|
252 |
+
self,
|
253 |
+
prompt: Union[str, List[str]] = None,
|
254 |
+
image: Union[torch.Tensor, PIL.Image.Image] = None,
|
255 |
+
strength: float = 0.8,
|
256 |
+
height: Optional[int] = None,
|
257 |
+
width: Optional[int] = None,
|
258 |
+
num_inference_steps: int = 50,
|
259 |
+
guidance_scale: float = 7.5,
|
260 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
261 |
+
num_images_per_prompt: Optional[int] = 1,
|
262 |
+
eta: float = 0.0,
|
263 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
264 |
+
latents: Optional[torch.FloatTensor] = None,
|
265 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
266 |
+
use_super: bool = True,
|
267 |
+
):
|
268 |
+
# 1. Default height and width to unet
|
269 |
+
height, width = self._default_height_width(height, width, image)
|
270 |
+
|
271 |
+
# 2. Define call parameters and Allocate the cuda buffers for TRT Engine bindings.
|
272 |
+
if prompt is not None and isinstance(prompt, str):
|
273 |
+
batch_size = 1
|
274 |
+
elif prompt is not None and isinstance(prompt, list):
|
275 |
+
batch_size = len(prompt)
|
276 |
+
else:
|
277 |
+
batch_size = prompt_embeds.shape[0]
|
278 |
+
|
279 |
+
# Allocate buffers for TensorRT engine bindings
|
280 |
+
for model_name, obj in self.trt_torch_models_cls.items():
|
281 |
+
self.engine[model_name].allocate_buffers(
|
282 |
+
shape_dict=obj.get_shape_dict(batch_size, height, width),
|
283 |
+
device=self.device
|
284 |
+
)
|
285 |
+
|
286 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
287 |
+
|
288 |
+
with trt.Runtime(TRT_LOGGER) as runtime:
|
289 |
+
torch.cuda.synchronize()
|
290 |
+
|
291 |
+
# 3. Encode input prompt. TRT Clip model.
|
292 |
+
prompt_embeds = self._trt_encode_prompt(
|
293 |
+
prompt, negative_prompt, num_images_per_prompt
|
294 |
+
)
|
295 |
+
|
296 |
+
# 4. Prepare mask, image, and controlnet_conditioning_image
|
297 |
+
image = preprocess(image)
|
298 |
+
|
299 |
+
# 5. Prepare timesteps.
|
300 |
+
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
|
301 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, self.device)
|
302 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
303 |
+
|
304 |
+
# 6. Prepare latent variables. It will use VAE-Enoder(currently the encoder is torch model, not trt)
|
305 |
+
latents = self.prepare_latents(
|
306 |
+
image,
|
307 |
+
latent_timestep,
|
308 |
+
batch_size,
|
309 |
+
num_images_per_prompt,
|
310 |
+
prompt_embeds.dtype,
|
311 |
+
self.device,
|
312 |
+
generator,
|
313 |
+
)
|
314 |
+
|
315 |
+
# 7. Prepare extra step kwargs and Set lantens/controlnet_conditioning_image/prompt_embeds to special dtype.
|
316 |
+
# The dytpe must be equal to the following to ensure that the NAN can not be issued in trt engine.
|
317 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
318 |
+
latents = latents.to(dtype=torch.float32)
|
319 |
+
prompt_embeds = prompt_embeds.to(dtype=torch.float16)
|
320 |
+
|
321 |
+
# 8. Denoising loop
|
322 |
+
for i, t in enumerate(timesteps):
|
323 |
+
# expand the latents if we are doing classifier free guidance
|
324 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
325 |
+
|
326 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
327 |
+
|
328 |
+
# predict the noise residual
|
329 |
+
|
330 |
+
dtype = np.float16
|
331 |
+
if t.dtype != torch.float32:
|
332 |
+
timestep_float = t.float()
|
333 |
+
else:
|
334 |
+
timestep_float = t
|
335 |
+
|
336 |
+
sample_inp = cuda.DeviceView(
|
337 |
+
ptr=latent_model_input.data_ptr(), shape=latent_model_input.shape, dtype=np.float32
|
338 |
+
)
|
339 |
+
timestep_inp = cuda.DeviceView(
|
340 |
+
ptr=timestep_float.data_ptr(), shape=timestep_float.shape, dtype=np.float32
|
341 |
+
)
|
342 |
+
embeddings_inp = cuda.DeviceView(
|
343 |
+
ptr=prompt_embeds.data_ptr(), shape=prompt_embeds.shape, dtype=dtype
|
344 |
+
)
|
345 |
+
|
346 |
+
noise_pred = self.engine['unet_fp16'].infer(
|
347 |
+
{"sample": sample_inp, "timestep": timestep_inp, "encoder_hidden_states": embeddings_inp},
|
348 |
+
self.stream)['latent']
|
349 |
+
# perform guidance
|
350 |
+
if do_classifier_free_guidance:
|
351 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
352 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
353 |
+
|
354 |
+
# compute the previous noisy sample x_t -> x_t-1
|
355 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
356 |
+
|
357 |
+
# 9. Use VAE-Decoder to decode the latents
|
358 |
+
image = self._trt_decode_latents(latents)
|
359 |
+
|
360 |
+
# 10. SuperX4 Resolution, Optional.
|
361 |
+
if use_super:
|
362 |
+
image = self.super.infer(np.transpose(image.astype(np.float16), (0, 3, 1, 2)))
|
363 |
+
|
364 |
+
return image
|
365 |
+
|
lyraSD/muse_trt/sd_text2img.py
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
StableDiffusion Text2Img Pipeline by TensorRT.
|
3 |
+
It has included SuperResolutionX4 TensorRT Engine.
|
4 |
+
|
5 |
+
Inspired by: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
|
6 |
+
https://developer.nvidia.com/tensorrt
|
7 |
+
"""
|
8 |
+
|
9 |
+
import inspect
|
10 |
+
import os
|
11 |
+
from typing import List, Optional, Union
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import tensorrt as trt
|
15 |
+
import torch
|
16 |
+
from diffusers import AutoencoderKL
|
17 |
+
from diffusers.schedulers import DPMSolverMultistepScheduler
|
18 |
+
from diffusers.utils import PIL_INTERPOLATION, randn_tensor
|
19 |
+
from polygraphy import cuda
|
20 |
+
from transformers import CLIPTokenizer
|
21 |
+
|
22 |
+
from .models import CLIP, UNet, VAEDecoder
|
23 |
+
from .super import SuperX4TRTInfer
|
24 |
+
from .utilities import TRT_LOGGER, Engine
|
25 |
+
|
26 |
+
|
27 |
+
class TRTStableDiffusionText2ImgPipeline:
|
28 |
+
def __init__(self, engine_dir: str, o_height: int = 512, o_width: int = 512, device: str = 'cuda:0'):
|
29 |
+
self.device = torch.device(device)
|
30 |
+
super().__init__()
|
31 |
+
self.vae = AutoencoderKL.from_pretrained(
|
32 |
+
os.path.join(engine_dir, 'vae'),
|
33 |
+
torch_dtype=torch.float16
|
34 |
+
).to(self.device)
|
35 |
+
|
36 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(
|
37 |
+
os.path.join(engine_dir, 'tokenizer')
|
38 |
+
)
|
39 |
+
self.scheduler = DPMSolverMultistepScheduler.from_pretrained(
|
40 |
+
os.path.join(engine_dir, 'scheduler')
|
41 |
+
)
|
42 |
+
|
43 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
44 |
+
self.trt_torch_models_cls = {
|
45 |
+
'clip': CLIP(),
|
46 |
+
'unet_fp16': UNet(),
|
47 |
+
'vae-decoder': VAEDecoder()
|
48 |
+
}
|
49 |
+
|
50 |
+
self.engine = {}
|
51 |
+
# Build engines
|
52 |
+
for model_name, _ in self.trt_torch_models_cls.items():
|
53 |
+
engine = Engine(model_name, engine_dir)
|
54 |
+
self.engine[model_name] = engine
|
55 |
+
# Separate iteration to activate engines
|
56 |
+
for model_name, _ in self.trt_torch_models_cls.items():
|
57 |
+
self.engine[model_name].activate()
|
58 |
+
self.stream = cuda.Stream()
|
59 |
+
|
60 |
+
self.super = SuperX4TRTInfer(
|
61 |
+
engine_dir,
|
62 |
+
model_name='superx4.plan',
|
63 |
+
fp16=True,
|
64 |
+
o_height=o_height,
|
65 |
+
o_width=o_width
|
66 |
+
)
|
67 |
+
|
68 |
+
def runEngine(self, model_name, feed_dict):
|
69 |
+
engine = self.engine[model_name]
|
70 |
+
return engine.infer(feed_dict, self.stream)
|
71 |
+
|
72 |
+
def _torch_decode_latents(self, latents):
|
73 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
74 |
+
image = self.vae.decode(latents).sample
|
75 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
76 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
77 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
78 |
+
image = (image * 255).round()
|
79 |
+
return image
|
80 |
+
|
81 |
+
def _trt_decode_latents(self, latents):
|
82 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
83 |
+
sample_inp = cuda.DeviceView(
|
84 |
+
ptr=latents.data_ptr(), shape=latents.shape, dtype=np.float32)
|
85 |
+
image = self.runEngine('vae-decoder', {"latent": sample_inp})['images']
|
86 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
87 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
88 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
89 |
+
image = (image * 255).round()
|
90 |
+
|
91 |
+
return image
|
92 |
+
|
93 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
94 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
95 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
96 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
97 |
+
# and should be between [0, 1]
|
98 |
+
|
99 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
100 |
+
extra_step_kwargs = {}
|
101 |
+
if accepts_eta:
|
102 |
+
extra_step_kwargs["eta"] = eta
|
103 |
+
|
104 |
+
# check if the scheduler accepts generator
|
105 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
106 |
+
if accepts_generator:
|
107 |
+
extra_step_kwargs["generator"] = generator
|
108 |
+
return extra_step_kwargs
|
109 |
+
|
110 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
111 |
+
# get the original timestep using init_timestep
|
112 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
113 |
+
|
114 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
115 |
+
timesteps = self.scheduler.timesteps[t_start:]
|
116 |
+
|
117 |
+
return timesteps, num_inference_steps - t_start
|
118 |
+
|
119 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
120 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
121 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
122 |
+
raise ValueError(
|
123 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
124 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
125 |
+
)
|
126 |
+
|
127 |
+
if latents is None:
|
128 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
129 |
+
else:
|
130 |
+
latents = latents.to(device)
|
131 |
+
|
132 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
133 |
+
latents = latents * self.scheduler.init_noise_sigma
|
134 |
+
return latents
|
135 |
+
|
136 |
+
def _trt_encode_prompt(self, prompt, negative_prompt, num_images_per_prompt,):
|
137 |
+
# Tokenize input
|
138 |
+
text_input_ids = self.tokenizer(
|
139 |
+
prompt,
|
140 |
+
padding="max_length",
|
141 |
+
max_length=self.tokenizer.model_max_length,
|
142 |
+
return_tensors="pt",
|
143 |
+
).input_ids.type(torch.int32).to(self.device)
|
144 |
+
|
145 |
+
# CLIP text encoder
|
146 |
+
text_input_ids_inp = cuda.DeviceView(
|
147 |
+
ptr=text_input_ids.data_ptr(), shape=text_input_ids.shape, dtype=np.int32
|
148 |
+
)
|
149 |
+
text_embeddings = self.runEngine('clip', {"input_ids": text_input_ids_inp})['text_embeddings']
|
150 |
+
|
151 |
+
# Duplicate text embeddings for each generation per prompt
|
152 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
153 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
154 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
155 |
+
|
156 |
+
max_length = text_input_ids.shape[-1]
|
157 |
+
uncond_input_ids = self.tokenizer(
|
158 |
+
negative_prompt,
|
159 |
+
padding="max_length",
|
160 |
+
max_length=max_length,
|
161 |
+
truncation=True,
|
162 |
+
return_tensors="pt",
|
163 |
+
).input_ids.type(torch.int32).to(self.device)
|
164 |
+
uncond_input_ids_inp = cuda.DeviceView(
|
165 |
+
ptr=uncond_input_ids.data_ptr(), shape=uncond_input_ids.shape, dtype=np.int32)
|
166 |
+
uncond_embeddings = self.runEngine('clip', {"input_ids": uncond_input_ids_inp})['text_embeddings']
|
167 |
+
|
168 |
+
# Duplicate unconditional embeddings for each generation per prompt
|
169 |
+
seq_len = uncond_embeddings.shape[1]
|
170 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
|
171 |
+
uncond_embeddings = uncond_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
172 |
+
|
173 |
+
# Concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes for classifier free guidance
|
174 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
175 |
+
text_embeddings = text_embeddings.to(dtype=torch.float16)
|
176 |
+
|
177 |
+
return text_embeddings
|
178 |
+
|
179 |
+
@torch.no_grad()
|
180 |
+
def __call__(
|
181 |
+
self,
|
182 |
+
prompt: Union[str, List[str]] = None,
|
183 |
+
height: Optional[int] = None,
|
184 |
+
width: Optional[int] = None,
|
185 |
+
num_inference_steps: int = 50,
|
186 |
+
guidance_scale: float = 7.5,
|
187 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
188 |
+
num_images_per_prompt: Optional[int] = 1,
|
189 |
+
eta: float = 0.0,
|
190 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
191 |
+
latents: Optional[torch.FloatTensor] = None,
|
192 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
193 |
+
use_super: bool = True,
|
194 |
+
):
|
195 |
+
# 1. Default height and width to unet
|
196 |
+
assert height is not None, "height can not be None"
|
197 |
+
assert width is not None, "width can not be None"
|
198 |
+
|
199 |
+
# 2. Define call parameters and Allocate the cuda buffers for TRT Engine bindings.
|
200 |
+
if prompt is not None and isinstance(prompt, str):
|
201 |
+
batch_size = 1
|
202 |
+
elif prompt is not None and isinstance(prompt, list):
|
203 |
+
batch_size = len(prompt)
|
204 |
+
else:
|
205 |
+
batch_size = prompt_embeds.shape[0]
|
206 |
+
|
207 |
+
# Allocate buffers for TensorRT engine bindings
|
208 |
+
for model_name, obj in self.trt_torch_models_cls.items():
|
209 |
+
self.engine[model_name].allocate_buffers(
|
210 |
+
shape_dict=obj.get_shape_dict(batch_size, height, width),
|
211 |
+
device=self.device
|
212 |
+
)
|
213 |
+
|
214 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
215 |
+
|
216 |
+
with trt.Runtime(TRT_LOGGER) as runtime:
|
217 |
+
torch.cuda.synchronize()
|
218 |
+
|
219 |
+
# 3. Encode input prompt. TRT Clip model.
|
220 |
+
prompt_embeds = self._trt_encode_prompt(
|
221 |
+
prompt, negative_prompt, num_images_per_prompt
|
222 |
+
)
|
223 |
+
|
224 |
+
# 4. Prepare timesteps.
|
225 |
+
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
|
226 |
+
timesteps = self.scheduler.timesteps
|
227 |
+
|
228 |
+
# 5. Prepare latent variables. It will use VAE-Enoder(currently the encoder is torch model, not trt)
|
229 |
+
num_channels_latents = 4
|
230 |
+
latents = self.prepare_latents(
|
231 |
+
batch_size*num_images_per_prompt,
|
232 |
+
num_channels_latents,
|
233 |
+
height,
|
234 |
+
width,
|
235 |
+
prompt_embeds.dtype,
|
236 |
+
self.device,
|
237 |
+
generator,
|
238 |
+
latents
|
239 |
+
)
|
240 |
+
|
241 |
+
# 6. Prepare extra step kwargs and Set lantens/controlnet_conditioning_image/prompt_embeds to special dtype.
|
242 |
+
# The dytpe must be equal to the following to ensure that the NAN can not be issued in trt engine.
|
243 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
244 |
+
latents = latents.to(dtype=torch.float32)
|
245 |
+
prompt_embeds = prompt_embeds.to(dtype=torch.float16)
|
246 |
+
|
247 |
+
# 7. Denoising loop
|
248 |
+
for i, t in enumerate(timesteps):
|
249 |
+
# expand the latents if we are doing classifier free guidance
|
250 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
251 |
+
|
252 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
253 |
+
|
254 |
+
# predict the noise residual
|
255 |
+
|
256 |
+
dtype = np.float16
|
257 |
+
if t.dtype != torch.float32:
|
258 |
+
timestep_float = t.float()
|
259 |
+
else:
|
260 |
+
timestep_float = t
|
261 |
+
|
262 |
+
sample_inp = cuda.DeviceView(
|
263 |
+
ptr=latent_model_input.data_ptr(), shape=latent_model_input.shape, dtype=np.float32
|
264 |
+
)
|
265 |
+
timestep_inp = cuda.DeviceView(
|
266 |
+
ptr=timestep_float.data_ptr(), shape=timestep_float.shape, dtype=np.float32
|
267 |
+
)
|
268 |
+
embeddings_inp = cuda.DeviceView(
|
269 |
+
ptr=prompt_embeds.data_ptr(), shape=prompt_embeds.shape, dtype=dtype
|
270 |
+
)
|
271 |
+
|
272 |
+
noise_pred = self.engine['unet_fp16'].infer(
|
273 |
+
{"sample": sample_inp, "timestep": timestep_inp, "encoder_hidden_states": embeddings_inp},
|
274 |
+
self.stream)['latent']
|
275 |
+
# perform guidance
|
276 |
+
if do_classifier_free_guidance:
|
277 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
278 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
279 |
+
|
280 |
+
# compute the previous noisy sample x_t -> x_t-1
|
281 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
282 |
+
|
283 |
+
# 8. Use VAE-Decoder to decode the latents
|
284 |
+
image = self._trt_decode_latents(latents)
|
285 |
+
|
286 |
+
# 9. SuperX4 Resolution, Optional.
|
287 |
+
if use_super:
|
288 |
+
image = self.super.infer(np.transpose(image.astype(np.float16), (0, 3, 1, 2)))
|
289 |
+
image = np.transpose(image, (0,3,1,2))
|
290 |
+
return image
|
lyraSD/muse_trt/super.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""use tensorrt engine to infer, a useful pipeline"""
|
2 |
+
|
3 |
+
import os
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
from polygraphy import cuda
|
7 |
+
from polygraphy.backend.common import bytes_from_path
|
8 |
+
from polygraphy.backend.trt import engine_from_bytes
|
9 |
+
|
10 |
+
|
11 |
+
class SuperX4TRTInfer:
|
12 |
+
def __init__(self, engine_dir,
|
13 |
+
model_name='superx4.plan',
|
14 |
+
o_height=None,
|
15 |
+
o_width=None,
|
16 |
+
fp16=True,
|
17 |
+
) -> None:
|
18 |
+
engine_path = os.path.join(engine_dir, model_name)
|
19 |
+
self.engine = engine_from_bytes(bytes_from_path(engine_path))
|
20 |
+
self.context = self.engine.create_execution_context()
|
21 |
+
|
22 |
+
self.o_height = o_height
|
23 |
+
self.o_width = o_width
|
24 |
+
self.fp = fp16
|
25 |
+
self.dtype = np.float16 if fp16 else np.float32
|
26 |
+
|
27 |
+
self.stream = cuda.Stream()
|
28 |
+
|
29 |
+
def infer(self, x):
|
30 |
+
batch_size, channel, height, width = x.shape
|
31 |
+
if self.o_height is None or self.o_width is None:
|
32 |
+
o_height = height*4
|
33 |
+
o_width = width*4
|
34 |
+
else:
|
35 |
+
o_height = self.o_height
|
36 |
+
o_width = self.o_width
|
37 |
+
|
38 |
+
h_output = np.empty([batch_size, channel, o_height, o_width], dtype=self.dtype)
|
39 |
+
|
40 |
+
# allocate device memory
|
41 |
+
d_input = cuda.wrapper().malloc(1 * x.nbytes)
|
42 |
+
d_output = cuda.wrapper().malloc(1*h_output.nbytes)
|
43 |
+
|
44 |
+
bindings = [int(d_input), int(d_output)]
|
45 |
+
|
46 |
+
# transfer input data to device
|
47 |
+
cuda.wrapper().memcpy(d_input, x.ctypes.data, x.nbytes, cuda.MemcpyKind.HostToDevice, self.stream.ptr)
|
48 |
+
|
49 |
+
# execute model
|
50 |
+
noerror = self.context.execute_async_v2(bindings, self.stream.ptr)
|
51 |
+
if not noerror:
|
52 |
+
raise ValueError(f"ERROR: inference failed.")
|
53 |
+
|
54 |
+
# transfer predictions back
|
55 |
+
cuda.wrapper().memcpy(h_output.ctypes.data, d_output, h_output.nbytes, cuda.MemcpyKind.DeviceToHost, self.stream.ptr)
|
56 |
+
cuda.wrapper().free(d_input)
|
57 |
+
cuda.wrapper().free(d_output)
|
58 |
+
|
59 |
+
return h_output
|
60 |
+
|
61 |
+
def teardown(self):
|
62 |
+
del self.engine
|
63 |
+
self.stream.free()
|
64 |
+
del self.stream
|
lyraSD/muse_trt/utilities.py
ADDED
@@ -0,0 +1,536 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""utils components"""
|
2 |
+
|
3 |
+
from collections import OrderedDict
|
4 |
+
from copy import copy
|
5 |
+
import numpy as np
|
6 |
+
import os
|
7 |
+
import math
|
8 |
+
from PIL import Image
|
9 |
+
from polygraphy.backend.common import bytes_from_path
|
10 |
+
from polygraphy.backend.trt import CreateConfig, Profile
|
11 |
+
from polygraphy.backend.trt import engine_from_bytes, engine_from_network, network_from_onnx_path, save_engine
|
12 |
+
from polygraphy.backend.trt import util as trt_util
|
13 |
+
from polygraphy import cuda
|
14 |
+
import random
|
15 |
+
from scipy import integrate
|
16 |
+
import tensorrt as trt
|
17 |
+
import torch
|
18 |
+
|
19 |
+
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
|
20 |
+
|
21 |
+
|
22 |
+
class Engine():
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
model_name,
|
26 |
+
engine_dir,
|
27 |
+
memory_pool_size=None
|
28 |
+
):
|
29 |
+
self.engine_path = os.path.join(engine_dir, model_name+'.plan')
|
30 |
+
self.engine = None
|
31 |
+
self.context = None
|
32 |
+
self.buffers = OrderedDict()
|
33 |
+
self.tensors = OrderedDict()
|
34 |
+
self.memory_pool_size = memory_pool_size
|
35 |
+
|
36 |
+
def __del__(self):
|
37 |
+
[buf.free() for buf in self.buffers.values() if isinstance(buf, cuda.DeviceArray)]
|
38 |
+
del self.engine
|
39 |
+
del self.context
|
40 |
+
del self.buffers
|
41 |
+
del self.tensors
|
42 |
+
|
43 |
+
def build(self, onnx_path, fp16, input_profile=None, enable_preview=False):
|
44 |
+
print(f"Building TensorRT engine for {onnx_path}: {self.engine_path}")
|
45 |
+
p = Profile()
|
46 |
+
if input_profile:
|
47 |
+
for name, dims in input_profile.items():
|
48 |
+
assert len(dims) == 3
|
49 |
+
p.add(name, min=dims[0], opt=dims[1], max=dims[2])
|
50 |
+
|
51 |
+
preview_features = []
|
52 |
+
if enable_preview:
|
53 |
+
trt_version = [int(i) for i in trt.__version__.split(".")]
|
54 |
+
# FASTER_DYNAMIC_SHAPES_0805 should only be used for TRT 8.5.1 or above.
|
55 |
+
if trt_version[0] > 8 or \
|
56 |
+
(trt_version[0] == 8 and (trt_version[1] > 5 or (trt_version[1] == 5 and trt_version[2] >= 1))):
|
57 |
+
preview_features = [trt.PreviewFeature.FASTER_DYNAMIC_SHAPES_0805]
|
58 |
+
|
59 |
+
if self.memory_pool_size is not None:
|
60 |
+
memory_pool_limits = {trt.MemoryPoolType.WORKSPACE: (self.memory_pool_size*(2 ** 30))}
|
61 |
+
print(memory_pool_limits)
|
62 |
+
else:
|
63 |
+
memory_pool_limits = None
|
64 |
+
engine = engine_from_network(
|
65 |
+
network_from_onnx_path(onnx_path),
|
66 |
+
config=CreateConfig(
|
67 |
+
fp16=fp16, profiles=[p], preview_features=preview_features, memory_pool_limits=memory_pool_limits
|
68 |
+
)
|
69 |
+
)
|
70 |
+
save_engine(engine, path=self.engine_path)
|
71 |
+
|
72 |
+
def activate(self):
|
73 |
+
print(f"Loading TensorRT engine: {self.engine_path}")
|
74 |
+
self.engine = engine_from_bytes(bytes_from_path(self.engine_path))
|
75 |
+
self.context = self.engine.create_execution_context()
|
76 |
+
|
77 |
+
def allocate_buffers(self, shape_dict=None, device='cuda'):
|
78 |
+
for idx in range(trt_util.get_bindings_per_profile(self.engine)):
|
79 |
+
binding = self.engine[idx]
|
80 |
+
if shape_dict and binding in shape_dict:
|
81 |
+
shape = shape_dict[binding]
|
82 |
+
else:
|
83 |
+
shape = self.engine.get_binding_shape(binding)
|
84 |
+
dtype = trt_util.np_dtype_from_trt(self.engine.get_binding_dtype(binding))
|
85 |
+
if self.engine.binding_is_input(binding):
|
86 |
+
self.context.set_binding_shape(idx, shape)
|
87 |
+
# Workaround to convert np dtype to torch
|
88 |
+
np_type_tensor = np.empty(shape=[], dtype=dtype)
|
89 |
+
torch_type_tensor = torch.from_numpy(np_type_tensor)
|
90 |
+
tensor = torch.empty(tuple(shape), dtype=torch_type_tensor.dtype).to(device=device)
|
91 |
+
self.tensors[binding] = tensor
|
92 |
+
self.buffers[binding] = cuda.DeviceView(ptr=tensor.data_ptr(), shape=shape, dtype=dtype)
|
93 |
+
|
94 |
+
def infer(self, feed_dict, stream):
|
95 |
+
start_binding, end_binding = trt_util.get_active_profile_bindings(self.context)
|
96 |
+
# shallow copy of ordered dict
|
97 |
+
device_buffers = copy(self.buffers)
|
98 |
+
for name, buf in feed_dict.items():
|
99 |
+
assert isinstance(buf, cuda.DeviceView)
|
100 |
+
device_buffers[name] = buf
|
101 |
+
bindings = [0] * start_binding + [buf.ptr for buf in device_buffers.values()]
|
102 |
+
noerror = self.context.execute_async_v2(bindings=bindings, stream_handle=stream.ptr)
|
103 |
+
if not noerror:
|
104 |
+
raise ValueError(f"ERROR: inference failed.")
|
105 |
+
|
106 |
+
return self.tensors
|
107 |
+
|
108 |
+
|
109 |
+
class LMSDiscreteScheduler():
|
110 |
+
def __init__(
|
111 |
+
self,
|
112 |
+
device='cuda',
|
113 |
+
beta_start=0.00085,
|
114 |
+
beta_end=0.012,
|
115 |
+
num_train_timesteps=1000,
|
116 |
+
):
|
117 |
+
self.num_train_timesteps = num_train_timesteps
|
118 |
+
self.order = 4
|
119 |
+
|
120 |
+
self.beta_start = beta_start
|
121 |
+
self.beta_end = beta_end
|
122 |
+
betas = (torch.linspace(beta_start**0.5, beta_end**0.5, self.num_train_timesteps, dtype=torch.float32) ** 2)
|
123 |
+
alphas = 1.0 - betas
|
124 |
+
self.alphas_cumprod = torch.cumprod(alphas, dim=0)
|
125 |
+
|
126 |
+
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
127 |
+
sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
|
128 |
+
self.sigmas = torch.from_numpy(sigmas)
|
129 |
+
|
130 |
+
# standard deviation of the initial noise distribution
|
131 |
+
self.init_noise_sigma = self.sigmas.max()
|
132 |
+
|
133 |
+
self.device = device
|
134 |
+
|
135 |
+
def set_timesteps(self, steps):
|
136 |
+
self.num_inference_steps = steps
|
137 |
+
|
138 |
+
timesteps = np.linspace(0, self.num_train_timesteps - 1, steps, dtype=float)[::-1].copy()
|
139 |
+
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
140 |
+
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
141 |
+
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
|
142 |
+
self.sigmas = torch.from_numpy(sigmas).to(device=self.device)
|
143 |
+
|
144 |
+
# Move all timesteps to correct device beforehand
|
145 |
+
self.timesteps = torch.from_numpy(timesteps).to(device=self.device).float()
|
146 |
+
self.derivatives = []
|
147 |
+
|
148 |
+
def scale_model_input(self, sample: torch.FloatTensor, idx, *args, **kwargs) -> torch.FloatTensor:
|
149 |
+
return sample * self.latent_scales[idx]
|
150 |
+
|
151 |
+
def configure(self):
|
152 |
+
order = self.order
|
153 |
+
self.lms_coeffs = []
|
154 |
+
self.latent_scales = [1./((sigma**2 + 1) ** 0.5) for sigma in self.sigmas]
|
155 |
+
|
156 |
+
def get_lms_coefficient(order, t, current_order):
|
157 |
+
"""
|
158 |
+
Compute a linear multistep coefficient.
|
159 |
+
"""
|
160 |
+
def lms_derivative(tau):
|
161 |
+
prod = 1.0
|
162 |
+
for k in range(order):
|
163 |
+
if current_order == k:
|
164 |
+
continue
|
165 |
+
prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k])
|
166 |
+
return prod
|
167 |
+
integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]
|
168 |
+
return integrated_coeff
|
169 |
+
|
170 |
+
for step_index in range(self.num_inference_steps):
|
171 |
+
order = min(step_index + 1, order)
|
172 |
+
self.lms_coeffs.append([get_lms_coefficient(order, step_index, curr_order) for curr_order in range(order)])
|
173 |
+
|
174 |
+
def step(self, output, latents, idx, timestep):
|
175 |
+
# compute the previous noisy sample x_t -> x_t-1
|
176 |
+
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
177 |
+
sigma = self.sigmas[idx]
|
178 |
+
pred_original_sample = latents - sigma * output
|
179 |
+
# 2. Convert to an ODE derivative
|
180 |
+
derivative = (latents - pred_original_sample) / sigma
|
181 |
+
self.derivatives.append(derivative)
|
182 |
+
if len(self.derivatives) > self.order:
|
183 |
+
self.derivatives.pop(0)
|
184 |
+
# 3. Compute previous sample based on the derivatives path
|
185 |
+
prev_sample = latents + sum(
|
186 |
+
coeff * derivative for coeff, derivative in zip(self.lms_coeffs[idx], reversed(self.derivatives))
|
187 |
+
)
|
188 |
+
|
189 |
+
return prev_sample
|
190 |
+
|
191 |
+
|
192 |
+
class DPMScheduler():
|
193 |
+
def __init__(
|
194 |
+
self,
|
195 |
+
beta_start=0.00085,
|
196 |
+
beta_end=0.012,
|
197 |
+
num_train_timesteps=1000,
|
198 |
+
solver_order=2,
|
199 |
+
predict_epsilon=True,
|
200 |
+
thresholding=False,
|
201 |
+
dynamic_thresholding_ratio=0.995,
|
202 |
+
sample_max_value=1.0,
|
203 |
+
algorithm_type="dpmsolver++",
|
204 |
+
solver_type="midpoint",
|
205 |
+
lower_order_final=True,
|
206 |
+
device='cuda',
|
207 |
+
):
|
208 |
+
# this schedule is very specific to the latent diffusion model.
|
209 |
+
self.betas = (
|
210 |
+
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
211 |
+
)
|
212 |
+
|
213 |
+
self.device = device
|
214 |
+
self.alphas = 1.0 - self.betas
|
215 |
+
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
216 |
+
# Currently we only support VP-type noise schedule
|
217 |
+
self.alpha_t = torch.sqrt(self.alphas_cumprod)
|
218 |
+
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
|
219 |
+
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
|
220 |
+
|
221 |
+
# standard deviation of the initial noise distribution
|
222 |
+
self.init_noise_sigma = 1.0
|
223 |
+
|
224 |
+
self.algorithm_type = algorithm_type
|
225 |
+
self.predict_epsilon = predict_epsilon
|
226 |
+
self.thresholding = thresholding
|
227 |
+
self.dynamic_thresholding_ratio = dynamic_thresholding_ratio
|
228 |
+
self.sample_max_value = sample_max_value
|
229 |
+
self.lower_order_final = lower_order_final
|
230 |
+
|
231 |
+
# settings for DPM-Solver
|
232 |
+
if algorithm_type not in ["dpmsolver", "dpmsolver++"]:
|
233 |
+
raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
|
234 |
+
if solver_type not in ["midpoint", "heun"]:
|
235 |
+
raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
|
236 |
+
|
237 |
+
# setable values
|
238 |
+
self.num_inference_steps = None
|
239 |
+
self.solver_order = solver_order
|
240 |
+
self.num_train_timesteps = num_train_timesteps
|
241 |
+
self.solver_type = solver_type
|
242 |
+
|
243 |
+
self.first_order_first_coef = []
|
244 |
+
self.first_order_second_coef = []
|
245 |
+
|
246 |
+
self.second_order_first_coef = []
|
247 |
+
self.second_order_second_coef = []
|
248 |
+
self.second_order_third_coef = []
|
249 |
+
|
250 |
+
self.third_order_first_coef = []
|
251 |
+
self.third_order_second_coef = []
|
252 |
+
self.third_order_third_coef = []
|
253 |
+
self.third_order_fourth_coef = []
|
254 |
+
|
255 |
+
def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
|
256 |
+
return sample
|
257 |
+
|
258 |
+
def configure(self):
|
259 |
+
lower_order_nums = 0
|
260 |
+
for step_index in range(self.num_inference_steps):
|
261 |
+
step_idx = step_index
|
262 |
+
timestep = self.timesteps[step_idx]
|
263 |
+
|
264 |
+
prev_timestep = 0 if step_idx == len(self.timesteps) - 1 else self.timesteps[step_idx + 1]
|
265 |
+
|
266 |
+
self.dpm_solver_first_order_coefs_precompute(timestep, prev_timestep)
|
267 |
+
|
268 |
+
timestep_list = [self.timesteps[step_index - 1], timestep]
|
269 |
+
self.multistep_dpm_solver_second_order_coefs_precompute(timestep_list, prev_timestep)
|
270 |
+
|
271 |
+
timestep_list = [self.timesteps[step_index - 2], self.timesteps[step_index - 1], timestep]
|
272 |
+
self.multistep_dpm_solver_third_order_coefs_precompute(timestep_list, prev_timestep)
|
273 |
+
|
274 |
+
if lower_order_nums < self.solver_order:
|
275 |
+
lower_order_nums += 1
|
276 |
+
|
277 |
+
def dpm_solver_first_order_coefs_precompute(self, timestep, prev_timestep):
|
278 |
+
lambda_t, lambda_s = self.lambda_t[prev_timestep], self.lambda_t[timestep]
|
279 |
+
alpha_t, alpha_s = self.alpha_t[prev_timestep], self.alpha_t[timestep]
|
280 |
+
sigma_t, sigma_s = self.sigma_t[prev_timestep], self.sigma_t[timestep]
|
281 |
+
h = lambda_t - lambda_s
|
282 |
+
if self.algorithm_type == "dpmsolver++":
|
283 |
+
self.first_order_first_coef.append(sigma_t / sigma_s)
|
284 |
+
self.first_order_second_coef.append(alpha_t * (torch.exp(-h) - 1.0))
|
285 |
+
elif self.algorithm_type == "dpmsolver":
|
286 |
+
self.first_order_first_coef.append(alpha_t / alpha_s)
|
287 |
+
self.first_order_second_coef.append(sigma_t * (torch.exp(h) - 1.0))
|
288 |
+
|
289 |
+
def multistep_dpm_solver_second_order_coefs_precompute(self, timestep_list, prev_timestep):
|
290 |
+
t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2]
|
291 |
+
lambda_t, lambda_s0, lambda_s1 = self.lambda_t[t], self.lambda_t[s0], self.lambda_t[s1]
|
292 |
+
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
|
293 |
+
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]
|
294 |
+
h = lambda_t - lambda_s0
|
295 |
+
if self.algorithm_type == "dpmsolver++":
|
296 |
+
# See https://arxiv.org/abs/2211.01095 for detailed derivations
|
297 |
+
if self.solver_type == "midpoint":
|
298 |
+
self.second_order_first_coef.append(sigma_t / sigma_s0)
|
299 |
+
self.second_order_second_coef.append((alpha_t * (torch.exp(-h) - 1.0)))
|
300 |
+
self.second_order_third_coef.append(0.5 * (alpha_t * (torch.exp(-h) - 1.0)))
|
301 |
+
elif self.solver_type == "heun":
|
302 |
+
self.second_order_first_coef.append(sigma_t / sigma_s0)
|
303 |
+
self.second_order_second_coef.append((alpha_t * (torch.exp(-h) - 1.0)))
|
304 |
+
self.second_order_third_coef.append(alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0))
|
305 |
+
elif self.algorithm_type == "dpmsolver":
|
306 |
+
# See https://arxiv.org/abs/2206.00927 for detailed derivations
|
307 |
+
if self.solver_type == "midpoint":
|
308 |
+
self.second_order_first_coef.append(alpha_t / alpha_s0)
|
309 |
+
self.second_order_second_coef.append((sigma_t * (torch.exp(h) - 1.0)))
|
310 |
+
self.second_order_third_coef.append(0.5 * (sigma_t * (torch.exp(h) - 1.0)))
|
311 |
+
elif self.solver_type == "heun":
|
312 |
+
self.second_order_first_coef.append(alpha_t / alpha_s0)
|
313 |
+
self.second_order_second_coef.append((sigma_t * (torch.exp(h) - 1.0)))
|
314 |
+
self.second_order_third_coef.append((sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)))
|
315 |
+
|
316 |
+
def multistep_dpm_solver_third_order_coefs_precompute(self, timestep_list, prev_timestep):
|
317 |
+
t, s0 = prev_timestep, timestep_list[-1]
|
318 |
+
lambda_t, lambda_s0 = (
|
319 |
+
self.lambda_t[t],
|
320 |
+
self.lambda_t[s0]
|
321 |
+
)
|
322 |
+
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
|
323 |
+
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]
|
324 |
+
h = lambda_t - lambda_s0
|
325 |
+
if self.algorithm_type == "dpmsolver++":
|
326 |
+
self.third_order_first_coef.append(sigma_t / sigma_s0)
|
327 |
+
self.third_order_second_coef.append(alpha_t * (torch.exp(-h) - 1.0))
|
328 |
+
self.third_order_third_coef.append(alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0))
|
329 |
+
self.third_order_fourth_coef.append(alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5))
|
330 |
+
elif self.algorithm_type == "dpmsolver":
|
331 |
+
self.third_order_first_coef.append(alpha_t / alpha_s0)
|
332 |
+
self.third_order_second_coef.append(sigma_t * (torch.exp(h) - 1.0))
|
333 |
+
self.third_order_third_coef.append(sigma_t * ((torch.exp(h) - 1.0) / h - 1.0))
|
334 |
+
self.third_order_fourth_coef.append(sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5))
|
335 |
+
|
336 |
+
def set_timesteps(self, num_inference_steps):
|
337 |
+
self.num_inference_steps = num_inference_steps
|
338 |
+
timesteps = (
|
339 |
+
np.linspace(0, self.num_train_timesteps - 1, num_inference_steps + 1)
|
340 |
+
.round()[::-1][:-1]
|
341 |
+
.copy()
|
342 |
+
.astype(np.int32)
|
343 |
+
)
|
344 |
+
self.timesteps = torch.from_numpy(timesteps).to(self.device)
|
345 |
+
self.model_outputs = [
|
346 |
+
None,
|
347 |
+
] * self.solver_order
|
348 |
+
self.lower_order_nums = 0
|
349 |
+
|
350 |
+
def convert_model_output(
|
351 |
+
self, model_output, timestep, sample
|
352 |
+
):
|
353 |
+
# DPM-Solver++ needs to solve an integral of the data prediction model.
|
354 |
+
if self.algorithm_type == "dpmsolver++":
|
355 |
+
if self.predict_epsilon:
|
356 |
+
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
|
357 |
+
x0_pred = (sample - sigma_t * model_output) / alpha_t
|
358 |
+
else:
|
359 |
+
x0_pred = model_output
|
360 |
+
if self.thresholding:
|
361 |
+
# Dynamic thresholding in https://arxiv.org/abs/2205.11487
|
362 |
+
dynamic_max_val = torch.quantile(
|
363 |
+
torch.abs(x0_pred).reshape((x0_pred.shape[0], -1)), self.dynamic_thresholding_ratio, dim=1
|
364 |
+
)
|
365 |
+
dynamic_max_val = torch.maximum(
|
366 |
+
dynamic_max_val,
|
367 |
+
self.sample_max_value * torch.ones_like(dynamic_max_val).to(dynamic_max_val.device),
|
368 |
+
)[(...,) + (None,) * (x0_pred.ndim - 1)]
|
369 |
+
x0_pred = torch.clamp(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val
|
370 |
+
return x0_pred
|
371 |
+
# DPM-Solver needs to solve an integral of the noise prediction model.
|
372 |
+
elif self.algorithm_type == "dpmsolver":
|
373 |
+
if self.predict_epsilon:
|
374 |
+
return model_output
|
375 |
+
else:
|
376 |
+
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
|
377 |
+
epsilon = (sample - alpha_t * model_output) / sigma_t
|
378 |
+
return epsilon
|
379 |
+
|
380 |
+
def dpm_solver_first_order_update(
|
381 |
+
self,
|
382 |
+
idx,
|
383 |
+
model_output,
|
384 |
+
sample
|
385 |
+
):
|
386 |
+
first_coef = self.first_order_first_coef[idx]
|
387 |
+
second_coef = self.first_order_second_coef[idx]
|
388 |
+
|
389 |
+
if self.algorithm_type == "dpmsolver++":
|
390 |
+
x_t = first_coef * sample - second_coef * model_output
|
391 |
+
elif self.algorithm_type == "dpmsolver":
|
392 |
+
x_t = first_coef * sample - second_coef * model_output
|
393 |
+
return x_t
|
394 |
+
|
395 |
+
def multistep_dpm_solver_second_order_update(
|
396 |
+
self,
|
397 |
+
idx,
|
398 |
+
model_output_list,
|
399 |
+
timestep_list,
|
400 |
+
prev_timestep,
|
401 |
+
sample
|
402 |
+
):
|
403 |
+
t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2]
|
404 |
+
m0, m1 = model_output_list[-1], model_output_list[-2]
|
405 |
+
lambda_t, lambda_s0, lambda_s1 = self.lambda_t[t], self.lambda_t[s0], self.lambda_t[s1]
|
406 |
+
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
|
407 |
+
r0 = h_0 / h
|
408 |
+
D0, D1 = m0, (1.0 / r0) * (m0 - m1)
|
409 |
+
|
410 |
+
first_coef = self.second_order_first_coef[idx]
|
411 |
+
second_coef = self.second_order_second_coef[idx]
|
412 |
+
third_coef = self.second_order_third_coef[idx]
|
413 |
+
|
414 |
+
if self.algorithm_type == "dpmsolver++":
|
415 |
+
# See https://arxiv.org/abs/2211.01095 for detailed derivations
|
416 |
+
if self.solver_type == "midpoint":
|
417 |
+
x_t = (
|
418 |
+
first_coef * sample
|
419 |
+
- second_coef * D0
|
420 |
+
- third_coef * D1
|
421 |
+
)
|
422 |
+
elif self.solver_type == "heun":
|
423 |
+
x_t = (
|
424 |
+
first_coef * sample
|
425 |
+
- second_coef * D0
|
426 |
+
+ third_coef * D1
|
427 |
+
)
|
428 |
+
elif self.algorithm_type == "dpmsolver":
|
429 |
+
# See https://arxiv.org/abs/2206.00927 for detailed derivations
|
430 |
+
if self.solver_type == "midpoint":
|
431 |
+
x_t = (
|
432 |
+
first_coef * sample
|
433 |
+
- second_coef * D0
|
434 |
+
- third_coef * D1
|
435 |
+
)
|
436 |
+
elif self.solver_type == "heun":
|
437 |
+
x_t = (
|
438 |
+
first_coef * sample
|
439 |
+
- second_coef * D0
|
440 |
+
- third_coef * D1
|
441 |
+
)
|
442 |
+
return x_t
|
443 |
+
|
444 |
+
def multistep_dpm_solver_third_order_update(
|
445 |
+
self,
|
446 |
+
idx,
|
447 |
+
model_output_list,
|
448 |
+
timestep_list,
|
449 |
+
prev_timestep,
|
450 |
+
sample
|
451 |
+
):
|
452 |
+
t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3]
|
453 |
+
m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]
|
454 |
+
lambda_t, lambda_s0, lambda_s1, lambda_s2 = (
|
455 |
+
self.lambda_t[t],
|
456 |
+
self.lambda_t[s0],
|
457 |
+
self.lambda_t[s1],
|
458 |
+
self.lambda_t[s2],
|
459 |
+
)
|
460 |
+
h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
|
461 |
+
r0, r1 = h_0 / h, h_1 / h
|
462 |
+
D0 = m0
|
463 |
+
D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
|
464 |
+
D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
|
465 |
+
D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
|
466 |
+
|
467 |
+
first_coef = self.third_order_first_coef[idx]
|
468 |
+
second_coef = self.third_order_second_coef[idx]
|
469 |
+
third_coef = self.third_order_third_coef[idx]
|
470 |
+
fourth_coef = self.third_order_fourth_coef[idx]
|
471 |
+
|
472 |
+
if self.algorithm_type == "dpmsolver++":
|
473 |
+
# See https://arxiv.org/abs/2206.00927 for detailed derivations
|
474 |
+
x_t = (
|
475 |
+
first_coef * sample
|
476 |
+
- second_coef * D0
|
477 |
+
+ third_coef * D1
|
478 |
+
- fourth_coef * D2
|
479 |
+
)
|
480 |
+
elif self.algorithm_type == "dpmsolver":
|
481 |
+
# See https://arxiv.org/abs/2206.00927 for detailed derivations
|
482 |
+
x_t = (
|
483 |
+
first_coef * sample
|
484 |
+
- second_coef * D0
|
485 |
+
- third_coef * D1
|
486 |
+
- fourth_coef * D2
|
487 |
+
)
|
488 |
+
return x_t
|
489 |
+
|
490 |
+
def step(self, output, latents, step_index, timestep):
|
491 |
+
if self.num_inference_steps is None:
|
492 |
+
raise ValueError(
|
493 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
494 |
+
)
|
495 |
+
|
496 |
+
prev_timestep = 0 if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1]
|
497 |
+
lower_order_final = (
|
498 |
+
(step_index == len(self.timesteps) - 1) and self.lower_order_final and len(self.timesteps) < 15
|
499 |
+
)
|
500 |
+
lower_order_second = (
|
501 |
+
(step_index == len(self.timesteps) - 2) and self.lower_order_final and len(self.timesteps) < 15
|
502 |
+
)
|
503 |
+
|
504 |
+
output = self.convert_model_output(output, timestep, latents)
|
505 |
+
for i in range(self.solver_order - 1):
|
506 |
+
self.model_outputs[i] = self.model_outputs[i + 1]
|
507 |
+
self.model_outputs[-1] = output
|
508 |
+
|
509 |
+
if self.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
|
510 |
+
prev_sample = self.dpm_solver_first_order_update(step_index, output, latents)
|
511 |
+
elif self.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
|
512 |
+
timestep_list = [self.timesteps[step_index - 1], timestep]
|
513 |
+
prev_sample = self.multistep_dpm_solver_second_order_update(
|
514 |
+
step_index, self.model_outputs, timestep_list, prev_timestep, latents
|
515 |
+
)
|
516 |
+
else:
|
517 |
+
timestep_list = [self.timesteps[step_index - 2], self.timesteps[step_index - 1], timestep]
|
518 |
+
prev_sample = self.multistep_dpm_solver_third_order_update(
|
519 |
+
step_index, self.model_outputs, timestep_list, prev_timestep, latents
|
520 |
+
)
|
521 |
+
|
522 |
+
if self.lower_order_nums < self.solver_order:
|
523 |
+
self.lower_order_nums += 1
|
524 |
+
|
525 |
+
return prev_sample
|
526 |
+
|
527 |
+
|
528 |
+
def save_image(images, image_path_dir, image_name_prefix):
|
529 |
+
"""
|
530 |
+
Save the generated images to png files.
|
531 |
+
"""
|
532 |
+
images = ((images + 1) * 255 / 2).clamp(0, 255).detach().permute(0, 2, 3, 1).round().type(torch.uint8).cpu().numpy()
|
533 |
+
for i in range(images.shape[0]):
|
534 |
+
image_path = os.path.join(image_path_dir, image_name_prefix+str(i+1)+'-'+str(random.randint(1000, 9999))+'.png')
|
535 |
+
print(f"Saving image {i+1} / {images.shape[0]} to: {image_path}")
|
536 |
+
Image.fromarray(images[i]).save(image_path)
|