import torch from lyrasd_model import LyraSdXLTxt2ImgPipeline import time import GPUtil import os from glob import glob import random # 存放模型文件的路径,应该包含一下结构: # 1. clip 模型 # 2. 转换好的优化后的 unet 模型,放入其中的 unet_bins 文件夹 # 3. vae 模型 # 4. scheduler 配置 # LyraSD 的 C++ 编译动态链接库,其中包含 C++ CUDA 计算的细节 lib_path = "./lyrasd_model/lyrasd_lib/libth_lyrasd_cu12_sm80.so" model_path = "./models/helloworldSDXL20Fp16" lora_path = "./models/dissolve_sdxl.safetensors" torch.classes.load_library(lib_path) # 构建 Txt2Img 的 Pipeline model = LyraSdXLTxt2ImgPipeline() model.reload_pipe(model_path) # load lora # lora model path, name,lora strength model.load_lora_v2(lora_path, "dissolve_sdxl", 0.4) # 准备应用的输入和超参数 prompt = "a cat, ral-dissolve" negative_prompt = "nswf, watermark" height, width = 1024, 1024 steps = 20 guidance_scale = 7.5 generator = torch.Generator().manual_seed(8788800) start = time.perf_counter() # 推理生成 images = model(prompt, height=height, width=width, num_inference_steps=steps, num_images_per_prompt=1, guidance_scale=guidance_scale, negative_prompt=negative_prompt, generator=generator ) print("image gen cost: ", time.perf_counter() - start) # 存储生成的图片 for i, image in enumerate(images): image.save(f"outputs/res_txt2img_xl_lora_{i}.png") # unload lora,参数为 lora 的名字,是否清除 lora 缓存 model.unload_lora_v2("dissolve_sdxl", True)