import torch import time from lyrasd_model import LyraSdTxt2ImgPipeline # 存放模型文件的路径,应该包含一下结构: # 1. clip 模型 # 2. 转换好的优化后的 unet 模型,放入其中的 unet_bins 文件夹 # 3. vae 模型 # 4. scheduler 配置 # LyraSD 的 C++ 编译动态链接库,其中包含 C++ CUDA 计算的细节 lib_path = "./lyrasd_model/lyrasd_lib/libth_lyrasd_cu12_sm80.so" model_path = "./models/rev-animated" lora_path = "./models/xiaorenshu.safetensors" torch.classes.load_library(lib_path) # 构建 Txt2Img 的 Pipeline model = LyraSdTxt2ImgPipeline() model.reload_pipe(model_path) # load lora # 参数分别为 lora 存放位置,名字,lora 强度,lora模型精度 model.load_lora_v2(lora_path, "xiaorenshu", 0.4) # 准备应用的输入和超参数 prompt = "a cat, cute, cartoon, concise, traditional, chinese painting, Tang and Song Dynasties, masterpiece, 4k, 8k, UHD, best quality" negative_prompt = "(((horrible))), (((scary))), (((naked))), (((large breasts))), high saturation, colorful, human:2, body:2, low quality, bad quality, lowres, out of frame, duplicate, watermark, signature, text, frames, cut, cropped, malformed limbs, extra limbs, (((missing arms))), (((missing legs)))" height, width = 512, 512 steps = 20 guidance_scale = 7 generator = torch.Generator().manual_seed(123) num_images = 1 start = time.perf_counter() # 推理生成 images = model(prompt, height, width, steps, guidance_scale, negative_prompt, num_images, generator=generator) print("image gen cost: ", time.perf_counter() - start) # 存储生成的图片 for i, image in enumerate(images): image.save(f"outputs/res_txt2img_lora_{i}.png") # unload lora,参数为 lora 的名字,是否清除 lora 缓存 model.unload_lora_v2("xiaorenshu", True)