--- tags: - text-classification base_model: almanach/camembert-base --- ## Validation Metrics loss: 0.1564033180475235 f1_macro: 0.9023266184854538 f1_micro: 0.9275 f1_weighted: 0.9281147770697895 precision_macro: 0.8944987578959265 precision_micro: 0.9275 precision_weighted: 0.9308721399366291 recall_macro: 0.9135199509056998 recall_micro: 0.9275 recall_weighted: 0.9275 accuracy: 0.9275 ## Exemple d'utilisation ```py from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Définir le nom du modèle et le token d'accès model_name = "TPM-28/emotion-FR-camembert" access_token = "" # Charger le tokenizer et le modèle tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token) model = AutoModelForSequenceClassification.from_pretrained(model_name, use_auth_token=access_token) # Définir les classes classes = ["anger", "fear", "joy", "love", "sadness", "surprise"] def classify_text(text): # Tokenizer le texte inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512) # Effectuer l'inférence with torch.no_grad(): outputs = model(**inputs) # Obtenir les prédictions probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) prediction = torch.argmax(probabilities, dim=-1) # Obtenir la classe prédite et sa probabilité predicted_class = classes[prediction.item()] confidence = probabilities[0][prediction].item() return predicted_class, confidence # Exemple d'utilisation text_to_classify = "je suis vraiment content" predicted_class, confidence = classify_text(text_to_classify) print(f"Texte : {text_to_classify}") print(f"Classe prédite : {predicted_class}") print(f"Confiance : {confidence:.2f}") ```