Update README.md
Browse files
README.md
CHANGED
@@ -51,7 +51,14 @@ model-index:
|
|
51 |
name: F1
|
52 |
---
|
53 |
|
54 |
-
# SetFit with firqaaa/indo-sentence-bert-base
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
57 |
|
@@ -60,6 +67,8 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
60 |
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
61 |
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
62 |
|
|
|
|
|
63 |
## Model Details
|
64 |
|
65 |
### Model Description
|
@@ -140,9 +149,6 @@ preds = model("liverpool sukses di kandang tottenham")
|
|
140 |
## Training Details
|
141 |
|
142 |
### Training Set Metrics
|
143 |
-
| Training set | Min | Median | Max |
|
144 |
-
|:-------------|:----|:--------|:----|
|
145 |
-
| Word count | 1 | 23.4167 | 79 |
|
146 |
|
147 |
| Label | Training Sample Count |
|
148 |
|:------|:----------------------|
|
@@ -167,7 +173,7 @@ preds = model("liverpool sukses di kandang tottenham")
|
|
167 |
- eval_max_steps: -1
|
168 |
- load_best_model_at_end: True
|
169 |
|
170 |
-
### Training Results
|
171 |
| Epoch | Step | Training Loss | Validation Loss |
|
172 |
|:-------:|:-------:|:-------------:|:---------------:|
|
173 |
| **1.0** | **384** | **0.0002** | **0.1683** |
|
|
|
51 |
name: F1
|
52 |
---
|
53 |
|
54 |
+
# SetFit with firqaaa/indo-sentence-bert-base for indonlu/smsa
|
55 |
+
|
56 |
+
## Author
|
57 |
+
|
58 |
+
**Kelompok 3 :**
|
59 |
+
- Muhammad Guntur Arfianto (20/459272/PA/19933)
|
60 |
+
- Putri Iqlima Miftahuddini (23/531392/NUGM/01467)
|
61 |
+
- Alan Kurniawan (23/531301/NUGM/01382)
|
62 |
|
63 |
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
64 |
|
|
|
67 |
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
68 |
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
69 |
|
70 |
+
The dataset that was used for fine-tuning this model is [indonlu](https://huggingface.co/datasets/indonlp/indonlu), specifically its subset, SmSa dataset.
|
71 |
+
|
72 |
## Model Details
|
73 |
|
74 |
### Model Description
|
|
|
149 |
## Training Details
|
150 |
|
151 |
### Training Set Metrics
|
|
|
|
|
|
|
152 |
|
153 |
| Label | Training Sample Count |
|
154 |
|:------|:----------------------|
|
|
|
173 |
- eval_max_steps: -1
|
174 |
- load_best_model_at_end: True
|
175 |
|
176 |
+
### Training Results (Epoch-to-epoch)
|
177 |
| Epoch | Step | Training Loss | Validation Loss |
|
178 |
|:-------:|:-------:|:-------------:|:---------------:|
|
179 |
| **1.0** | **384** | **0.0002** | **0.1683** |
|