TRUEnder commited on
Commit
2e85c1f
1 Parent(s): 3140f91

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -5
README.md CHANGED
@@ -51,7 +51,14 @@ model-index:
51
  name: F1
52
  ---
53
 
54
- # SetFit with firqaaa/indo-sentence-bert-base
 
 
 
 
 
 
 
55
 
56
  This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
57
 
@@ -60,6 +67,8 @@ The model has been trained using an efficient few-shot learning technique that i
60
  1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
61
  2. Training a classification head with features from the fine-tuned Sentence Transformer.
62
 
 
 
63
  ## Model Details
64
 
65
  ### Model Description
@@ -140,9 +149,6 @@ preds = model("liverpool sukses di kandang tottenham")
140
  ## Training Details
141
 
142
  ### Training Set Metrics
143
- | Training set | Min | Median | Max |
144
- |:-------------|:----|:--------|:----|
145
- | Word count | 1 | 23.4167 | 79 |
146
 
147
  | Label | Training Sample Count |
148
  |:------|:----------------------|
@@ -167,7 +173,7 @@ preds = model("liverpool sukses di kandang tottenham")
167
  - eval_max_steps: -1
168
  - load_best_model_at_end: True
169
 
170
- ### Training Results
171
  | Epoch | Step | Training Loss | Validation Loss |
172
  |:-------:|:-------:|:-------------:|:---------------:|
173
  | **1.0** | **384** | **0.0002** | **0.1683** |
 
51
  name: F1
52
  ---
53
 
54
+ # SetFit with firqaaa/indo-sentence-bert-base for indonlu/smsa
55
+
56
+ ## Author
57
+
58
+ **Kelompok 3 :**
59
+ - Muhammad Guntur Arfianto (20/459272/PA/19933)
60
+ - Putri Iqlima Miftahuddini (23/531392/NUGM/01467)
61
+ - Alan Kurniawan (23/531301/NUGM/01382)
62
 
63
  This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
64
 
 
67
  1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
68
  2. Training a classification head with features from the fine-tuned Sentence Transformer.
69
 
70
+ The dataset that was used for fine-tuning this model is [indonlu](https://huggingface.co/datasets/indonlp/indonlu), specifically its subset, SmSa dataset.
71
+
72
  ## Model Details
73
 
74
  ### Model Description
 
149
  ## Training Details
150
 
151
  ### Training Set Metrics
 
 
 
152
 
153
  | Label | Training Sample Count |
154
  |:------|:----------------------|
 
173
  - eval_max_steps: -1
174
  - load_best_model_at_end: True
175
 
176
+ ### Training Results (Epoch-to-epoch)
177
  | Epoch | Step | Training Loss | Validation Loss |
178
  |:-------:|:-------:|:-------------:|:---------------:|
179
  | **1.0** | **384** | **0.0002** | **0.1683** |