--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: whisper-small-chinese-tw results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: zh-TW split: test args: zh-TW metrics: - name: Wer type: wer value: 39.73242726693565 --- # whisper-small-chinese-tw This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2167 - Wer: 39.7324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0957 | 1.4184 | 1000 | 0.1986 | 40.8792 | | 0.0315 | 2.8369 | 2000 | 0.2038 | 40.4544 | | 0.0036 | 4.2553 | 3000 | 0.2102 | 40.1571 | | 0.0018 | 5.6738 | 4000 | 0.2167 | 39.7324 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.4.0+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3