Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- tr
|
5 |
+
---
|
6 |
+
|
7 |
+
# Turkcell-LLM-7b-v1
|
8 |
+
|
9 |
+
This model is an extended version of a Mistral-based Large Language Model (LLM) for Turkish. It was trained on a cleaned Turkish raw dataset containing 5 billion tokens. The training process involved using the DORA method followed by fine-tuning with the LORA method.
|
10 |
+
|
11 |
+
## Model Details
|
12 |
+
|
13 |
+
- **Base Model**: Mistral 7B based LLM
|
14 |
+
- **Tokenizer Extension**: Specifically extended for Turkish
|
15 |
+
- **Training Dataset**: Cleaned Turkish raw data with 5 billion tokens
|
16 |
+
- **Training Method**: Initially with DORA, followed by fine-tuning with LORA
|
17 |
+
|
18 |
+
### DORA Configuration
|
19 |
+
|
20 |
+
- `lora_alpha`: 128
|
21 |
+
- `lora_dropout`: 0.05
|
22 |
+
- `r`: 64
|
23 |
+
- `target_modules`: "all-linear"
|
24 |
+
|
25 |
+
|
26 |
+
### LORA Fine-Tuning Configuration
|
27 |
+
|
28 |
+
- `lora_alpha`: 128
|
29 |
+
- `lora_dropout`: 0.05
|
30 |
+
- `r`: 256
|
31 |
+
- `target_modules`: "all-linear"
|
32 |
+
|
33 |
+
## Usage Examples
|
34 |
+
|
35 |
+
```python
|
36 |
+
|
37 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
38 |
+
|
39 |
+
device = "cuda" # the device to load the model onto
|
40 |
+
|
41 |
+
model = AutoModelForCausalLM.from_pretrained("TURKCELL/Turkcell-LLM-7b-v1")
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained("TURKCELL/Turkcell-LLM-7b-v1")
|
43 |
+
|
44 |
+
messages = [
|
45 |
+
{"role": "user", "content": "Türkiye'nin başkenti neresidir?"},
|
46 |
+
]
|
47 |
+
|
48 |
+
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
49 |
+
|
50 |
+
eos_token = tokenizer("<|im_end|>",add_special_tokens=False)["input_ids"][0]
|
51 |
+
|
52 |
+
model_inputs = encodeds.to(device)
|
53 |
+
model.to(device)
|
54 |
+
|
55 |
+
generated_ids = model.generate(model_inputs,
|
56 |
+
max_new_tokens=1024,
|
57 |
+
do_sample=True,
|
58 |
+
eos_token_id=eos_token)
|
59 |
+
|
60 |
+
decoded = tokenizer.batch_decode(generated_ids)
|
61 |
+
print(decoded[0])
|
62 |
+
|