|
from copy import deepcopy |
|
from typing import Any, Dict |
|
|
|
from aiflows.base_flows import SequentialFlow |
|
from aiflows.utils import logging |
|
|
|
logging.set_verbosity_debug() |
|
log = logging.get_logger(__name__) |
|
|
|
class InteractiveCodeGenFlow(SequentialFlow): |
|
"""This flow writes code in an interactive manner. It is a sequential flow composed of: |
|
1. MemoryReading: reads in the code library. |
|
2. CodeGenerator: generates code based on the goal and functions in the code library. |
|
3. CodeFileEditor: writes the generated code to a temp file for the user to see, edit and provide feedback. |
|
4. ParseFeedback: opens up the temp file with vscode and parses the feedback from the user. |
|
|
|
*Input Interface*: |
|
- `goal` |
|
|
|
*Output Interface*: |
|
- `code` |
|
- `feedback` |
|
- `temp_code_file_location` |
|
""" |
|
REQUIRED_KEYS_CONFIG = ["max_rounds", "early_exit_key", "topology", "memory_files"] |
|
|
|
def __init__( |
|
self, |
|
memory_files: Dict[str, Any], |
|
**kwargs |
|
): |
|
super().__init__(**kwargs) |
|
self.memory_files = memory_files |
|
|
|
@classmethod |
|
def instantiate_from_config(cls, config): |
|
flow_config = deepcopy(config) |
|
|
|
kwargs = {"flow_config": flow_config} |
|
|
|
|
|
memory_files = flow_config["memory_files"] |
|
kwargs.update({"memory_files": memory_files}) |
|
|
|
|
|
kwargs.update({"subflows": cls._set_up_subflows(flow_config)}) |
|
|
|
|
|
return cls(**kwargs) |
|
|
|
def run(self, input_data: Dict[str, Any]) -> Dict[str, Any]: |
|
|
|
self._state_update_dict(update_data=input_data) |
|
|
|
|
|
self._state_update_dict(update_data={"memory_files": self.memory_files}) |
|
|
|
max_rounds = self.flow_config.get("max_rounds", 1) |
|
if max_rounds is None: |
|
log.info(f"Running {self.flow_config['name']} without `max_rounds` until the early exit condition is met.") |
|
|
|
self._sequential_run(max_rounds=max_rounds) |
|
|
|
output = self._get_output_from_state() |
|
|
|
return output |
|
|