import json from copy import deepcopy from typing import Any, Dict, List from flow_modules.aiflows.ChatFlowModule import ChatAtomicFlow from dataclasses import dataclass @dataclass class Command: name: str description: str input_args: List[str] # TODO: controller should be generalized class Controller_JarvisFlow(ChatAtomicFlow): """This class is a controller for JarvisFlow, it takes the plan generated by the planner, logs of previous executions, depending on the initial goal or the subsequent feedback from the branching executors (and the human), to decide which executor to call next (or to exit by calling finish). *Configuration Parameters*: - `commands` (dict): a dictionary of commands that the controller can call, each command has a name, a description, and a list of input arguments. The commands will be injected into the system message prompt template. - `system_message_prompt_template` (str): the template for the system message prompt, there are several components needs to be injected into the template, including the commands, plan, plan_file_location, logs, and the goal. The injection of commands is done then initalizing the flow, the rest of the components are injected at the beginning of each run. - `previous_messages` (int): a sliding window of previous messages that will be passed to the model. This is the central part of short-term memory management. *Input Interface Non Initialized*: - `goal` (str): the initial goal of the conversation, this is the input to the model. - `memory_files` (dict): a dictionary of file locations that contains the plan, logs. - `plan` (str): the plan generated by the planner, the plan will change (marked as done, or re-plan) as execution preceeds. - `logs` (str): the logs of previous executions, the logs will be appended as execution preceeds. *Input Interface Initialized*: - `result` (str): the result of the previous execution, this is the input to the model. - `memory_files` (dict): a dictionary of file locations that contains the plan, logs. - `plan` (str): the plan generated by the planner, the plan will change (marked as done, or re-plan) as execution preceeds. - `logs` (str): the logs of previous executions, the logs will be appended as execution preceeds. - `goal` (str): the initial goal, this is kept because the goal is also injected into the system prompts so that Jarvis does not forget what the goal is, when the memory sliding window is implemented. *Output Interface*: - `command` (str): the command to be executed by the executor. - `command_args` (dict): the arguments of the command to be executed by the executor. """ def __init__( self, commands: List[Command], **kwargs): """Initialize the flow, inject the commands into the system message prompt template.""" super().__init__(**kwargs) self.system_message_prompt_template = self.system_message_prompt_template.partial( commands=self._build_commands_manual(commands), plan="no plans yet", plan_file_location="no plan file location yet", logs="no logs yet", ) self.hint_for_model = """ Make sure your response is in the following format: Response Format: { "command": "call one of the subordinates", "command_args": { "arg name": "value" } } """ def _get_content_file_location(self, input_data, content_name): # get the location of the file that contains the content: plan, logs, code_library assert "memory_files" in input_data, "memory_files not passed to Jarvis/Controller" assert content_name in input_data["memory_files"], f"{content_name} not in memory files" return input_data["memory_files"][content_name] def _get_content(self, input_data, content_name): # get the content of the file that contains the content: plan, logs, code_library assert content_name in input_data, f"{content_name} not passed to Jarvis/Controller" content = input_data[content_name] if len(content) == 0: content = f'No {content_name} yet' return content @staticmethod def _build_commands_manual(commands: List[Command]) -> str: """Build the manual for the commands.""" ret = "" for i, command in enumerate(commands): command_input_json_schema = json.dumps( {input_arg: f"YOUR_{input_arg.upper()}" for input_arg in command.input_args}) ret += f"{i + 1}. {command.name}: {command.description} Input arguments (given in the JSON schema): {command_input_json_schema}\n" return ret @classmethod def instantiate_from_config(cls, config): """Setting up the flow from the config file. In particular, setting up the prompts, backend, and commands.""" flow_config = deepcopy(config) kwargs = {"flow_config": flow_config} # ~~~ Set up prompts ~~~ kwargs.update(cls._set_up_prompts(flow_config)) # ~~~Set up backend ~~~ kwargs.update(cls._set_up_backend(flow_config)) # ~~~ Set up commands ~~~ commands = flow_config["commands"] commands = [ Command(name, command_conf["description"], command_conf["input_args"]) for name, command_conf in commands.items() ] kwargs.update({"commands": commands}) # ~~~ Instantiate flow ~~~ return cls(**kwargs) def _update_prompts_and_input(self, input_data: Dict[str, Any]): """Hinting the model to output in json format, updating the plan, logs to the system prompts.""" if 'goal' in input_data: input_data['goal'] += self.hint_for_model if 'result' in input_data: input_data['result'] += self.hint_for_model plan_file_location = self._get_content_file_location(input_data, "plan") plan_content = self._get_content(input_data, "plan") logs_content = self._get_content(input_data, "logs") self.system_message_prompt_template = self.system_message_prompt_template.partial( plan_file_location=plan_file_location, plan=plan_content, logs=logs_content ) def run(self, input_data: Dict[str, Any]) -> Dict[str, Any]: self._update_prompts_and_input(input_data) # ~~~when conversation is initialized, append the updated system prompts to the chat history ~~~ if self._is_conversation_initialized(): updated_system_message_content = self._get_message(self.system_message_prompt_template, input_data) self._state_update_add_chat_message(content=updated_system_message_content, role=self.flow_config["system_name"]) # ~~~run the model, special mechanism to deal with situations where the output is not in json format. ~~~ while True: api_output = super().run(input_data)["api_output"].strip() try: start = api_output.index("{") end = api_output.rindex("}") + 1 json_str = api_output[start:end] return json.loads(json_str) except (ValueError, json.decoder.JSONDecodeError, json.JSONDecodeError): updated_system_message_content = self._get_message(self.system_message_prompt_template, input_data) self._state_update_add_chat_message(content=updated_system_message_content, role=self.flow_config["system_name"]) new_goal = "The previous respond cannot be parsed with json.loads. Next time, do not provide any comments or code blocks. Make sure your next response is purely json parsable." new_input_data = input_data.copy() new_input_data['result'] = new_goal input_data = new_input_data