TachyHealthResearch commited on
Commit
6bddfdb
1 Parent(s): cbc9760

Training in progress, step 65, checkpoint

Browse files
last-checkpoint/README.md ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: deepseek-ai/deepseek-llm-7b-chat
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: True
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+ - PEFT 0.7.0
last-checkpoint/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "deepseek-ai/deepseek-llm-7b-chat",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.1,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v_proj",
23
+ "down_proj",
24
+ "q_proj",
25
+ "k_proj",
26
+ "gate_proj",
27
+ "up_proj",
28
+ "o_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }
last-checkpoint/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e539c7d29f28e7bf3189f97535848aefceb6fab6557519f106d8367fed09c89d
3
+ size 75012288
last-checkpoint/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e9be4e2e8066cfdf9173a341feef6dfa163131c2366c0ba34259b7eee259d0d
3
+ size 38034724
last-checkpoint/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bf616fc8f0f1afbaf078532cbb81e411d5e1a4c86d97ff1aad2f218d94ba7f6
3
+ size 14244
last-checkpoint/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f42057680a5702f6f5a4011b02db74a01965e38f5a26c223b3885c3184ec6f0
3
+ size 1064
last-checkpoint/trainer_state.json ADDED
@@ -0,0 +1,409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.026,
5
+ "eval_steps": 1000,
6
+ "global_step": 65,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 6.666666666666667e-05,
14
+ "loss": 2.4138,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 0.00013333333333333334,
20
+ "loss": 2.3782,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.0,
25
+ "learning_rate": 0.0002,
26
+ "loss": 2.1039,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.0,
31
+ "learning_rate": 0.00019863945578231293,
32
+ "loss": 2.4971,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.0,
37
+ "learning_rate": 0.00019727891156462587,
38
+ "loss": 2.1249,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.0,
43
+ "learning_rate": 0.0001959183673469388,
44
+ "loss": 2.649,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.0,
49
+ "learning_rate": 0.0001945578231292517,
50
+ "loss": 2.9032,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.0,
55
+ "learning_rate": 0.00019319727891156462,
56
+ "loss": 1.8552,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.0,
61
+ "learning_rate": 0.00019183673469387756,
62
+ "loss": 2.3256,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.0,
67
+ "learning_rate": 0.00019047619047619048,
68
+ "loss": 2.4122,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.0,
73
+ "learning_rate": 0.00018911564625850343,
74
+ "loss": 2.0678,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.0,
79
+ "learning_rate": 0.00018775510204081634,
80
+ "loss": 2.3379,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.01,
85
+ "learning_rate": 0.00018639455782312926,
86
+ "loss": 2.1801,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.01,
91
+ "learning_rate": 0.0001850340136054422,
92
+ "loss": 2.1896,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.01,
97
+ "learning_rate": 0.00018367346938775512,
98
+ "loss": 2.0319,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.01,
103
+ "learning_rate": 0.00018231292517006804,
104
+ "loss": 1.9579,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.01,
109
+ "learning_rate": 0.00018095238095238095,
110
+ "loss": 2.1247,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.01,
115
+ "learning_rate": 0.0001795918367346939,
116
+ "loss": 2.8723,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.01,
121
+ "learning_rate": 0.00017823129251700681,
122
+ "loss": 1.8466,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.01,
127
+ "learning_rate": 0.00017687074829931973,
128
+ "loss": 2.3306,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.01,
133
+ "learning_rate": 0.00017551020408163265,
134
+ "loss": 2.3662,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.01,
139
+ "learning_rate": 0.0001741496598639456,
140
+ "loss": 2.1281,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.01,
145
+ "learning_rate": 0.0001727891156462585,
146
+ "loss": 2.0371,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.01,
151
+ "learning_rate": 0.00017142857142857143,
152
+ "loss": 2.4064,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.01,
157
+ "learning_rate": 0.00017006802721088434,
158
+ "loss": 1.8651,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.01,
163
+ "learning_rate": 0.00016870748299319729,
164
+ "loss": 2.2024,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.01,
169
+ "learning_rate": 0.00016734693877551023,
170
+ "loss": 1.8373,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.01,
175
+ "learning_rate": 0.00016598639455782315,
176
+ "loss": 1.8414,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.01,
181
+ "learning_rate": 0.00016462585034013606,
182
+ "loss": 2.0103,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.01,
187
+ "learning_rate": 0.00016326530612244898,
188
+ "loss": 1.8933,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.01,
193
+ "learning_rate": 0.00016190476190476192,
194
+ "loss": 1.9478,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.01,
199
+ "learning_rate": 0.00016054421768707484,
200
+ "loss": 1.7242,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.01,
205
+ "learning_rate": 0.00015918367346938776,
206
+ "loss": 2.6501,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.01,
211
+ "learning_rate": 0.00015782312925170067,
212
+ "loss": 1.9442,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.01,
217
+ "learning_rate": 0.00015646258503401362,
218
+ "loss": 2.097,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.01,
223
+ "learning_rate": 0.00015510204081632654,
224
+ "loss": 1.9518,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.01,
229
+ "learning_rate": 0.00015374149659863945,
230
+ "loss": 2.0381,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.02,
235
+ "learning_rate": 0.00015238095238095237,
236
+ "loss": 2.1018,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.02,
241
+ "learning_rate": 0.0001510204081632653,
242
+ "loss": 2.6064,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.02,
247
+ "learning_rate": 0.00014965986394557826,
248
+ "loss": 1.8832,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.02,
253
+ "learning_rate": 0.00014829931972789117,
254
+ "loss": 1.7176,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.02,
259
+ "learning_rate": 0.0001469387755102041,
260
+ "loss": 1.9294,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.02,
265
+ "learning_rate": 0.000145578231292517,
266
+ "loss": 2.2566,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.02,
271
+ "learning_rate": 0.00014421768707482995,
272
+ "loss": 2.0185,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.02,
277
+ "learning_rate": 0.00014285714285714287,
278
+ "loss": 1.9994,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.02,
283
+ "learning_rate": 0.00014149659863945578,
284
+ "loss": 1.8176,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.02,
289
+ "learning_rate": 0.0001401360544217687,
290
+ "loss": 2.2882,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.02,
295
+ "learning_rate": 0.00013877551020408165,
296
+ "loss": 1.9445,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.02,
301
+ "learning_rate": 0.00013741496598639456,
302
+ "loss": 2.1634,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.02,
307
+ "learning_rate": 0.00013605442176870748,
308
+ "loss": 1.7348,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.02,
313
+ "learning_rate": 0.0001346938775510204,
314
+ "loss": 2.1267,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.02,
319
+ "learning_rate": 0.00013333333333333334,
320
+ "loss": 2.0458,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.02,
325
+ "learning_rate": 0.00013197278911564626,
326
+ "loss": 1.8534,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.02,
331
+ "learning_rate": 0.00013061224489795917,
332
+ "loss": 1.6838,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.02,
337
+ "learning_rate": 0.00012925170068027212,
338
+ "loss": 1.896,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.02,
343
+ "learning_rate": 0.00012789115646258506,
344
+ "loss": 2.2231,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.02,
349
+ "learning_rate": 0.00012653061224489798,
350
+ "loss": 2.0001,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.02,
355
+ "learning_rate": 0.0001251700680272109,
356
+ "loss": 1.9079,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.02,
361
+ "learning_rate": 0.0001238095238095238,
362
+ "loss": 2.2205,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.02,
367
+ "learning_rate": 0.00012244897959183676,
368
+ "loss": 2.1606,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.02,
373
+ "learning_rate": 0.00012108843537414967,
374
+ "loss": 2.1003,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.02,
379
+ "learning_rate": 0.00011972789115646259,
380
+ "loss": 2.0567,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.03,
385
+ "learning_rate": 0.00011836734693877552,
386
+ "loss": 1.8886,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.03,
391
+ "learning_rate": 0.00011700680272108844,
392
+ "loss": 1.565,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.03,
397
+ "learning_rate": 0.00011564625850340137,
398
+ "loss": 1.7418,
399
+ "step": 65
400
+ }
401
+ ],
402
+ "logging_steps": 1,
403
+ "max_steps": 150,
404
+ "num_train_epochs": 1,
405
+ "save_steps": 5,
406
+ "total_flos": 3125581151207424.0,
407
+ "trial_name": null,
408
+ "trial_params": null
409
+ }
last-checkpoint/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:005ade789904b4e240609100571fb0216dbaf8df32c43f475da91389ea6bdd72
3
+ size 4600