Transformers
Safetensors
unsloth
Inference Endpoints
Taka2024 commited on
Commit
2946546
·
verified ·
1 Parent(s): 619aa71

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +116 -193
README.md CHANGED
@@ -2,199 +2,122 @@
2
  library_name: transformers
3
  tags:
4
  - unsloth
 
 
 
 
 
 
 
5
  ---
6
 
7
- # Model Card for Model ID
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
- <!-- Provide a quick summary of what the model is/does. -->
10
-
11
-
12
-
13
- ## Model Details
14
-
15
- ### Model Description
16
-
17
- <!-- Provide a longer summary of what this model is. -->
18
-
19
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
20
-
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
- - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
-
29
- ### Model Sources [optional]
30
-
31
- <!-- Provide the basic links for the model. -->
32
-
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
36
-
37
- ## Uses
38
-
39
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
-
41
- ### Direct Use
42
-
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
-
45
- [More Information Needed]
46
-
47
- ### Downstream Use [optional]
48
-
49
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
-
51
- [More Information Needed]
52
-
53
- ### Out-of-Scope Use
54
-
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
-
57
- [More Information Needed]
58
-
59
- ## Bias, Risks, and Limitations
60
-
61
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
-
63
- [More Information Needed]
64
-
65
- ### Recommendations
66
-
67
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
-
69
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
-
71
- ## How to Get Started with the Model
72
-
73
- Use the code below to get started with the model.
74
-
75
- [More Information Needed]
76
-
77
- ## Training Details
78
-
79
- ### Training Data
80
-
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
-
83
- [More Information Needed]
84
-
85
- ### Training Procedure
86
-
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
-
89
- #### Preprocessing [optional]
90
-
91
- [More Information Needed]
92
-
93
-
94
- #### Training Hyperparameters
95
-
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
-
98
- #### Speeds, Sizes, Times [optional]
99
-
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
-
102
- [More Information Needed]
103
-
104
- ## Evaluation
105
-
106
- <!-- This section describes the evaluation protocols and provides the results. -->
107
-
108
- ### Testing Data, Factors & Metrics
109
-
110
- #### Testing Data
111
-
112
- <!-- This should link to a Dataset Card if possible. -->
113
-
114
- [More Information Needed]
115
-
116
- #### Factors
117
-
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Metrics
123
-
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
-
126
- [More Information Needed]
127
-
128
- ### Results
129
-
130
- [More Information Needed]
131
-
132
- #### Summary
133
-
134
-
135
-
136
- ## Model Examination [optional]
137
-
138
- <!-- Relevant interpretability work for the model goes here -->
139
-
140
- [More Information Needed]
141
-
142
- ## Environmental Impact
143
-
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
-
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
-
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
-
154
- ## Technical Specifications [optional]
155
-
156
- ### Model Architecture and Objective
157
-
158
- [More Information Needed]
159
-
160
- ### Compute Infrastructure
161
-
162
- [More Information Needed]
163
-
164
- #### Hardware
165
-
166
- [More Information Needed]
167
-
168
- #### Software
169
-
170
- [More Information Needed]
171
-
172
- ## Citation [optional]
173
-
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
-
176
- **BibTeX:**
177
-
178
- [More Information Needed]
179
-
180
- **APA:**
181
-
182
- [More Information Needed]
183
-
184
- ## Glossary [optional]
185
-
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
-
188
- [More Information Needed]
189
-
190
- ## More Information [optional]
191
-
192
- [More Information Needed]
193
-
194
- ## Model Card Authors [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Contact
199
-
200
- [More Information Needed]
 
2
  library_name: transformers
3
  tags:
4
  - unsloth
5
+ license: gemma
6
+ datasets:
7
+ - llm-jp/magpie-sft-v1.0
8
+ - DeL-TaiseiOzaki/Tengentoppa-sft-qwen2.5-32b-reasoning-100k
9
+ - weblab-GENIAC/Open-Platypus-Japanese-masked
10
+ base_model:
11
+ - google/gemma-2-27b
12
  ---
13
 
14
+ ## 学習データ
15
+ 以下のデータセットを使用。
16
+ - [llm-jp/magpie-sft-v1.0](https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0) (apache-2.0)
17
+ - [DeL-TaiseiOzaki/Tengentoppa-sft-qwen2.5-32b-reasoning-100k](https://huggingface.co/datasets/DeL-TaiseiOzaki/Tengentoppa-sft-qwen2.5-32b-reasoning-100k) (apache-2.0)
18
+ - [weblab-GENIAC/Open-Platypus-Japanese-masked](https://huggingface.co/datasets/weblab-GENIAC/Open-Platypus-Japanese-masked) (MIT)
19
+ - MITライセンスのデータのみ抽出して使用。
20
+
21
+ gemma-2利用にあたり、ライセンス上制約の懸念のあるデータセットは利用していない。
22
+
23
+ ## 推論手順
24
+ unsloth版のサンプルコード(Google Colab L4使用)をベースとし、推論は1時間以内で終了するようになっている。
25
+ なお、unsloth版でgemmaを直接使用しようとすると、意図せず別のモデルがダウンロードされることが報告されていることから、当該事象を回避するため、ローカルに一度ダウンロードしたものを使用する形に変更している。
26
+
27
+ ```
28
+ # 必要なライブラリをインストール
29
+ %%capture
30
+ !pip install unsloth
31
+ !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
32
+ !pip install -U torch
33
+ !pip install -U peft
34
+ ```
35
+
36
+ ```
37
+ HF_TOKEN = "" #必要なトークンを設定してください
38
+ ```
39
+
40
+ ```
41
+ # HFからモデルリポジトリをダウンロード
42
+ !huggingface-cli login --token $HF_TOKEN
43
+ !huggingface-cli download google/gemma-2-27b --local-dir gemma-2-27b/
44
+ ```
45
+
46
+ ```
47
+ # 必要なライブラリを読み込み
48
+ from unsloth import FastLanguageModel
49
+ from peft import PeftModel
50
+ import torch
51
+ import json
52
+ from tqdm import tqdm
53
+ import re
54
+ ```
55
+
56
+ ```
57
+ # ベースとなるモデルと学習したLoRAのアダプタ
58
+ model_id = "/content/gemma-2-27b"
59
+ adapter_id = "Taka2024/gemma-2-27b-it-2_lora"
60
+ ```
61
+
62
+ ```
63
+ # unslothのFastLanguageModelで元のモデルをロード。
64
+ dtype = None # Noneにしておけば自動で設定
65
+ load_in_4bit = True # 今回は27Bモデルを扱うためTrue
66
+
67
+ model, tokenizer = FastLanguageModel.from_pretrained(
68
+ model_name=model_id,
69
+ dtype=dtype,
70
+ load_in_4bit=load_in_4bit,
71
+ trust_remote_code=True,
72
+ )
73
+ ```
74
+
75
+ ```
76
+ # 元のモデルにLoRAのアダプタを統合。
77
+ model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
78
+ ```
79
+
80
+ ```
81
+ # タスクとなるデータの読み込み。
82
+ # 事前にデータをアップロードしてください。
83
+ datasets = []
84
+ with open("/content/elyza-tasks-100-TV_0.jsonl", "r") as f:
85
+ item = ""
86
+ for line in f:
87
+ line = line.strip()
88
+ item += line
89
+ if item.endswith("}"):
90
+ datasets.append(json.loads(item))
91
+ item = ""
92
+ ```
93
+
94
+ ```
95
+ # モデルを用いてタスクの推論。
96
+ # 推論するためにモデルのモードを変更
97
+ FastLanguageModel.for_inference(model)
98
+
99
+ results = []
100
+ for dt in tqdm(datasets):
101
+ input = dt["input"]
102
+
103
+ prompt = f"""### あなたは日本人のための優秀なコンシェルジュです。指示には必ずわかりやすい日本語で回答してください。\n### 指示\n{input}\n### 回答\n"""
104
+
105
+ inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
106
+
107
+ outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
108
+ prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
109
+
110
+ results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
111
+ ```
112
+
113
+ ```
114
+ # 結果をjsonlで保存。
115
+
116
+ # ここではadapter_idを元にファイル名を決定しているが、ファイル名は任意で問題なし。
117
+ json_file_id = re.sub(".*/", "", adapter_id)
118
+ with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f:
119
+ for result in results:
120
+ json.dump(result, f, ensure_ascii=False)
121
+ f.write('\n')
122
+ ```
123