vdelvtak commited on
Commit
03e50fe
·
verified ·
1 Parent(s): ab7312f

Upload 11 files

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,408 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:25103
10
+ - loss:MultipleNegativesRankingLoss
11
+ widget:
12
+ - source_sentence: PR4061978 OOL Action (TOC sur l'chantillon TANKF_SSS6_TOC prlev
13
+ le 15 janvier 2024 par EMG
14
+ sentences:
15
+ - Vedolizumab Production Halted to Alarm Activation in Chromatography
16
+ - Out-of-Limits Result for Tank F Sample TOC on January 18,
17
+ - 'On 13Dec2022, during batch record review, Analyst EID 50320381) discovered that
18
+ Fraction paste recovery below range for lot LR2249467 . Fraction IV-1 paste recovery
19
+ was 46.39 g/kg of CPP which was below the range for 25% recovered lots (48.11
20
+ to 61.04 g/kg of CPP) per FORM-050414 "Fr +III 25% Supernatant to Fr 1 PPT & Fr
21
+ IV1 @ 25% supernatant" (Version 43.0, Effective Date: 01Nov2022). This deviation
22
+ occurred in Building 5 Fractionation.'
23
+ - source_sentence: 'Instrument: Tolerable Error Limits for Balance R2105'
24
+ sentences:
25
+ - Metrology Out of tolerance of pipette Biohit Proline 100-200L of QC Lab, tag LEAE02416
26
+ - LI PR4102547 -OoL Action mold) bio pour l'chantillon In Process SD du lot BE12E034Z
27
+ prlev le 02 FEV 2024 -PL4
28
+ - of range during the Fix/Display check on the LEWIT43108 in room R2105
29
+ - source_sentence: Lors de la rception de l'chantillon P104-DS10-LAL (lot Glassia
30
+ BE22B017Z) au laboratoire QC de Takeda le Juin, ZONDACQ Antoine (QC Logistic Analyst,
31
+ constat que le tube utilis pour le prlvement destin au testing LAL (SOP-048687
32
+ n'tait pas tube valid . En effet, selon la procdure SOP-054100 "LE20LA02006B -
33
+ Echantillonnage, identification, stockage et distribution des chantillons Glassia
34
+ (Ligne 5)") ce sont des tubes "Falcon ref 3300446" qui doivent tre utiliss pour
35
+ les prlvements destins au testing LAL (SOP-048687 . Or, l'chantillon impliqu par
36
+ la prsente Dviation a t prlev dans un tube "Corning ref 430052" non adapt au prlvement
37
+ d'chantillon LAL L'chantillon concern a t prlev le 08 Juin 2021 par KVDW (= date
38
+ d'occurrence). Une deviation (event) est donc initie afin d'investiguer cette
39
+ erreur de prlvement.
40
+ sentences:
41
+ - 'Lors de la completion de rendement dans le MBR du lot BE22B022Z (DS Glassia)
42
+ le 02-Sep-2021, Cline Brunin (CBI, technicienne spcialiste EBM) a observ une valeur
43
+ de rendement en alpha-1-antitrypsine (AAT) hors limites pour l''chantillon DS5
44
+ (P102 - Aprs filtre presse) Valeur calcule: 107.1% Limite infrieure: 84.0% Limite
45
+ suprieure 107.0%'
46
+ - Out-of-Tolerance (OOT Calibration of HL-3170 Process Liquid UV Sensor at Los Angeles
47
+ Manufacturing Facility
48
+ - Use of a non-validated tube for the collection of sample P104-DS10-LAL of lot
49
+ BE22B017Z
50
+ - source_sentence: NCR-000660 - 158-029 - Out of Tolerance
51
+ sentences:
52
+ - Etat du serveur Esxi dans VMware de Lessines aprs un problme d'adaptateur rse
53
+ - 'Torque Wrench Asset ID #, owning department Purification, in room 1025, was NCR
54
+ #for failure of calibration on (see Deviation 3066031 Attachment 1 NCR-000660).
55
+ Previous Calibration was on 28Oct2021 with a calibration result of Pass . Review
56
+ of Non-conformance History, including the deviation, resulted in 1 NCR (s) for
57
+ this equipment from 4 events reviewed.'
58
+ - LI PR 2928690 - OOL Alerte (cfu escalade en action sur l'chantillon WFI prlev
59
+ le 08/AUG/2022
60
+ - source_sentence: Emergency Door in Staircase Room 1044 for Post-Viral Found Not
61
+ Completely Closed
62
+ sentences:
63
+ - 'On 02Jul2023, Manufacturing Supervisor (EID 50251544) was informed that Post-Viral
64
+ Exit Door in Grade C Staircase leading to uncontrolled space, was found opened
65
+ . Additionally, on 04Jul2023, Manufacturing Supervisor (50251544) was that the
66
+ same door in Room 1044 was found opened . Per TOOL-216083, "Global Job Aid, Takeda
67
+ Glossary (Reference Only)" (Version, Effective Date: 20Jun2022, a deviation is
68
+ a departure from an established process, system, procedure,, regulatory filing,
69
+ Health Authority requirement, specification, tolerance, trend, or other conformance
70
+ requirement that may have GXP impact . This deviation occurred in Building 5 Fractionation.'
71
+ - Wrong autorization of packaging file for lot 20I25B437D
72
+ - Deviation in DeltaV Recording During Wash Step of LA23G014 Elution Process
73
+ ---
74
+
75
+ # SentenceTransformer
76
+
77
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
78
+
79
+ ## Model Details
80
+
81
+ ### Model Description
82
+ - **Model Type:** Sentence Transformer
83
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
84
+ - **Maximum Sequence Length:** 512 tokens
85
+ - **Output Dimensionality:** 768 tokens
86
+ - **Similarity Function:** Cosine Similarity
87
+ <!-- - **Training Dataset:** Unknown -->
88
+ <!-- - **Language:** Unknown -->
89
+ <!-- - **License:** Unknown -->
90
+
91
+ ### Model Sources
92
+
93
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
94
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
95
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
96
+
97
+ ### Full Model Architecture
98
+
99
+ ```
100
+ SentenceTransformer(
101
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
102
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
103
+ )
104
+ ```
105
+
106
+ ## Usage
107
+
108
+ ### Direct Usage (Sentence Transformers)
109
+
110
+ First install the Sentence Transformers library:
111
+
112
+ ```bash
113
+ pip install -U sentence-transformers
114
+ ```
115
+
116
+ Then you can load this model and run inference.
117
+ ```python
118
+ from sentence_transformers import SentenceTransformer
119
+
120
+ # Download from the 🤗 Hub
121
+ model = SentenceTransformer("sentence_transformers_model_id")
122
+ # Run inference
123
+ sentences = [
124
+ 'Emergency Door in Staircase Room 1044 for Post-Viral Found Not Completely Closed',
125
+ 'On 02Jul2023, Manufacturing Supervisor (EID 50251544) was informed that Post-Viral Exit Door in Grade C Staircase leading to uncontrolled space, was found opened . Additionally, on 04Jul2023, Manufacturing Supervisor (50251544) was that the same door in Room 1044 was found opened . Per TOOL-216083, "Global Job Aid, Takeda Glossary (Reference Only)" (Version, Effective Date: 20Jun2022, a deviation is a departure from an established process, system, procedure,, regulatory filing, Health Authority requirement, specification, tolerance, trend, or other conformance requirement that may have GXP impact . This deviation occurred in Building 5 Fractionation.',
126
+ 'Deviation in DeltaV Recording During Wash Step of LA23G014 Elution Process',
127
+ ]
128
+ embeddings = model.encode(sentences)
129
+ print(embeddings.shape)
130
+ # [3, 768]
131
+
132
+ # Get the similarity scores for the embeddings
133
+ similarities = model.similarity(embeddings, embeddings)
134
+ print(similarities.shape)
135
+ # [3, 3]
136
+ ```
137
+
138
+ <!--
139
+ ### Direct Usage (Transformers)
140
+
141
+ <details><summary>Click to see the direct usage in Transformers</summary>
142
+
143
+ </details>
144
+ -->
145
+
146
+ <!--
147
+ ### Downstream Usage (Sentence Transformers)
148
+
149
+ You can finetune this model on your own dataset.
150
+
151
+ <details><summary>Click to expand</summary>
152
+
153
+ </details>
154
+ -->
155
+
156
+ <!--
157
+ ### Out-of-Scope Use
158
+
159
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
160
+ -->
161
+
162
+ <!--
163
+ ## Bias, Risks and Limitations
164
+
165
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
166
+ -->
167
+
168
+ <!--
169
+ ### Recommendations
170
+
171
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
172
+ -->
173
+
174
+ ## Training Details
175
+
176
+ ### Training Dataset
177
+
178
+ #### Unnamed Dataset
179
+
180
+
181
+ * Size: 25,103 training samples
182
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
183
+ * Approximate statistics based on the first 1000 samples:
184
+ | | sentence_0 | sentence_1 |
185
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
186
+ | type | string | string |
187
+ | details | <ul><li>min: 4 tokens</li><li>mean: 66.28 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 72.37 tokens</li><li>max: 512 tokens</li></ul> |
188
+ * Samples:
189
+ | sentence_0 | sentence_1 |
190
+ |:-----------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
191
+ | <code>MFGR-0008591 Step 15.1/15.2 no</code> | <code>On 01NOV2022 at 2120 in room 1044, Manufacturing Associate ME1 discovered prompt for Connection to VP-5020 not appear at step 15.1 of MFGR-0008591 v1.0, VED-D, Capto Adhere Blank Chromatography Material 6254681, 12376356, Process Order 221191021 . Process Engineer NS was contacted and verified with Automation Engineer EDS that recipe does require prompt Connect to VP-5020 (step 15.1), Connect 5020 5011 (Step and Ready to Load into XX-XX (step 15.2). Quality CY and Quality Assurance Lead SSH were contacted gave approval to . On 02NOV2022 in room 1044, Manufacturing Associate ARF discovered prompt Connect Collection to VP-5231 did not appear at step 15.1 MFGR-0008592 v1.0, VED-D, Nuvia HR-S Blank Chromatography Material 6254682, 12376361, Process Order 221191023 . Manufacturing Supervisor D1A and Manufacturing Specialist JN were and instructed ARF to the prompt Connect Collection to VP-5231 and proceed with processing It was prompt to Load into XV-XX at step 15.2 also did not appear JN gave approval to proceed with processing.</code> |
192
+ | <code>BE22D002Z - Ligne de transfert TP2110-TP2140 en statut sale expir</code> | <code>Ce dimanche 15/01/2023 18h50, Guillaume Deschuyteneer technicien Senior de production Glassia) a cr un work order EBM pour effectuer le CIP de dbut de de transfert line 2110-2140 (WO EBM: CIPG010048 pour la production du lot BE22D002Z . EBM alors spcifi Guillaume que le statut sanitaire de la line 2110-2140 tait en "sale expir". Guillaume a alors sa Cline Brunin (Contrematre de production Glassia) pour l'en informer.</code> |
193
+ | <code>Donne manquante initiale Glose l'chantillons SMA aprs capsulage du lot LE13X075 - LI PR215117</code> | <code>Initial Missing Data: agar observed on SMA after CAPPING batch LE13X075 - LI PR2151179</code> |
194
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
195
+ ```json
196
+ {
197
+ "scale": 20.0,
198
+ "similarity_fct": "cos_sim"
199
+ }
200
+ ```
201
+
202
+ ### Training Hyperparameters
203
+ #### Non-Default Hyperparameters
204
+
205
+ - `eval_strategy`: steps
206
+ - `per_device_train_batch_size`: 16
207
+ - `per_device_eval_batch_size`: 16
208
+ - `num_train_epochs`: 50
209
+ - `multi_dataset_batch_sampler`: round_robin
210
+
211
+ #### All Hyperparameters
212
+ <details><summary>Click to expand</summary>
213
+
214
+ - `overwrite_output_dir`: False
215
+ - `do_predict`: False
216
+ - `eval_strategy`: steps
217
+ - `prediction_loss_only`: True
218
+ - `per_device_train_batch_size`: 16
219
+ - `per_device_eval_batch_size`: 16
220
+ - `per_gpu_train_batch_size`: None
221
+ - `per_gpu_eval_batch_size`: None
222
+ - `gradient_accumulation_steps`: 1
223
+ - `eval_accumulation_steps`: None
224
+ - `torch_empty_cache_steps`: None
225
+ - `learning_rate`: 5e-05
226
+ - `weight_decay`: 0.0
227
+ - `adam_beta1`: 0.9
228
+ - `adam_beta2`: 0.999
229
+ - `adam_epsilon`: 1e-08
230
+ - `max_grad_norm`: 1
231
+ - `num_train_epochs`: 50
232
+ - `max_steps`: -1
233
+ - `lr_scheduler_type`: linear
234
+ - `lr_scheduler_kwargs`: {}
235
+ - `warmup_ratio`: 0.0
236
+ - `warmup_steps`: 0
237
+ - `log_level`: passive
238
+ - `log_level_replica`: warning
239
+ - `log_on_each_node`: True
240
+ - `logging_nan_inf_filter`: True
241
+ - `save_safetensors`: True
242
+ - `save_on_each_node`: False
243
+ - `save_only_model`: False
244
+ - `restore_callback_states_from_checkpoint`: False
245
+ - `no_cuda`: False
246
+ - `use_cpu`: False
247
+ - `use_mps_device`: False
248
+ - `seed`: 42
249
+ - `data_seed`: None
250
+ - `jit_mode_eval`: False
251
+ - `use_ipex`: False
252
+ - `bf16`: False
253
+ - `fp16`: False
254
+ - `fp16_opt_level`: O1
255
+ - `half_precision_backend`: auto
256
+ - `bf16_full_eval`: False
257
+ - `fp16_full_eval`: False
258
+ - `tf32`: None
259
+ - `local_rank`: 0
260
+ - `ddp_backend`: None
261
+ - `tpu_num_cores`: None
262
+ - `tpu_metrics_debug`: False
263
+ - `debug`: []
264
+ - `dataloader_drop_last`: False
265
+ - `dataloader_num_workers`: 0
266
+ - `dataloader_prefetch_factor`: None
267
+ - `past_index`: -1
268
+ - `disable_tqdm`: False
269
+ - `remove_unused_columns`: True
270
+ - `label_names`: None
271
+ - `load_best_model_at_end`: False
272
+ - `ignore_data_skip`: False
273
+ - `fsdp`: []
274
+ - `fsdp_min_num_params`: 0
275
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
276
+ - `fsdp_transformer_layer_cls_to_wrap`: None
277
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
278
+ - `deepspeed`: None
279
+ - `label_smoothing_factor`: 0.0
280
+ - `optim`: adamw_torch
281
+ - `optim_args`: None
282
+ - `adafactor`: False
283
+ - `group_by_length`: False
284
+ - `length_column_name`: length
285
+ - `ddp_find_unused_parameters`: None
286
+ - `ddp_bucket_cap_mb`: None
287
+ - `ddp_broadcast_buffers`: False
288
+ - `dataloader_pin_memory`: True
289
+ - `dataloader_persistent_workers`: False
290
+ - `skip_memory_metrics`: True
291
+ - `use_legacy_prediction_loop`: False
292
+ - `push_to_hub`: False
293
+ - `resume_from_checkpoint`: None
294
+ - `hub_model_id`: None
295
+ - `hub_strategy`: every_save
296
+ - `hub_private_repo`: False
297
+ - `hub_always_push`: False
298
+ - `gradient_checkpointing`: False
299
+ - `gradient_checkpointing_kwargs`: None
300
+ - `include_inputs_for_metrics`: False
301
+ - `eval_do_concat_batches`: True
302
+ - `fp16_backend`: auto
303
+ - `push_to_hub_model_id`: None
304
+ - `push_to_hub_organization`: None
305
+ - `mp_parameters`:
306
+ - `auto_find_batch_size`: False
307
+ - `full_determinism`: False
308
+ - `torchdynamo`: None
309
+ - `ray_scope`: last
310
+ - `ddp_timeout`: 1800
311
+ - `torch_compile`: False
312
+ - `torch_compile_backend`: None
313
+ - `torch_compile_mode`: None
314
+ - `dispatch_batches`: None
315
+ - `split_batches`: None
316
+ - `include_tokens_per_second`: False
317
+ - `include_num_input_tokens_seen`: False
318
+ - `neftune_noise_alpha`: None
319
+ - `optim_target_modules`: None
320
+ - `batch_eval_metrics`: False
321
+ - `eval_on_start`: False
322
+ - `use_liger_kernel`: False
323
+ - `eval_use_gather_object`: False
324
+ - `batch_sampler`: batch_sampler
325
+ - `multi_dataset_batch_sampler`: round_robin
326
+
327
+ </details>
328
+
329
+ ### Training Logs
330
+ | Epoch | Step | Training Loss |
331
+ |:------:|:----:|:-------------:|
332
+ | 0.3187 | 500 | 1.0372 |
333
+ | 0.6373 | 1000 | 0.3844 |
334
+ | 0.6667 | 1046 | - |
335
+ | 0.9560 | 1500 | 0.2836 |
336
+ | 1.0 | 1569 | - |
337
+ | 1.2747 | 2000 | 0.2401 |
338
+ | 1.3333 | 2092 | - |
339
+ | 1.5934 | 2500 | 0.1983 |
340
+ | 1.9120 | 3000 | 0.1513 |
341
+ | 2.0 | 3138 | - |
342
+ | 2.2307 | 3500 | 0.1278 |
343
+ | 2.5494 | 4000 | 0.1001 |
344
+ | 2.6667 | 4184 | - |
345
+ | 2.8681 | 4500 | 0.0801 |
346
+ | 3.0 | 4707 | - |
347
+ | 3.1867 | 5000 | 0.0707 |
348
+ | 3.3333 | 5230 | - |
349
+ | 3.5054 | 5500 | 0.0479 |
350
+ | 3.8241 | 6000 | 0.0425 |
351
+ | 4.0 | 6276 | - |
352
+
353
+
354
+ ### Framework Versions
355
+ - Python: 3.10.12
356
+ - Sentence Transformers: 3.1.0
357
+ - Transformers: 4.45.0.dev0
358
+ - PyTorch: 2.4.1
359
+ - Accelerate: 0.26.1
360
+ - Datasets: 2.16.1
361
+ - Tokenizers: 0.19.1
362
+
363
+ ## Citation
364
+
365
+ ### BibTeX
366
+
367
+ #### Sentence Transformers
368
+ ```bibtex
369
+ @inproceedings{reimers-2019-sentence-bert,
370
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
371
+ author = "Reimers, Nils and Gurevych, Iryna",
372
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
373
+ month = "11",
374
+ year = "2019",
375
+ publisher = "Association for Computational Linguistics",
376
+ url = "https://arxiv.org/abs/1908.10084",
377
+ }
378
+ ```
379
+
380
+ #### MultipleNegativesRankingLoss
381
+ ```bibtex
382
+ @misc{henderson2017efficient,
383
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
384
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
385
+ year={2017},
386
+ eprint={1705.00652},
387
+ archivePrefix={arXiv},
388
+ primaryClass={cs.CL}
389
+ }
390
+ ```
391
+
392
+ <!--
393
+ ## Glossary
394
+
395
+ *Clearly define terms in order to be accessible across audiences.*
396
+ -->
397
+
398
+ <!--
399
+ ## Model Card Authors
400
+
401
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
402
+ -->
403
+
404
+ <!--
405
+ ## Model Card Contact
406
+
407
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
408
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../../.ckpt/tsdae/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "pooler_fc_size": 768,
21
+ "pooler_num_attention_heads": 12,
22
+ "pooler_num_fc_layers": 3,
23
+ "pooler_size_per_head": 128,
24
+ "pooler_type": "first_token_transform",
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.45.0.dev0",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 105879
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0",
4
+ "transformers": "4.45.0.dev0",
5
+ "pytorch": "2.4.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30ead4a795a85f0f0131ee831102157f13e5ec901ff7b7031e56502ab4bd934e
3
+ size 669448040
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff