henryharm commited on
Commit
7d40a0e
·
1 Parent(s): c7af39a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -1
README.md CHANGED
@@ -14,10 +14,13 @@ Here is how to use this model to get a summary of a given text in PyTorch:
14
 
15
  ```python
16
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
 
17
  tokenizer = AutoTokenizer.from_pretrained("TalTechNLP/mBART-ERRnews")
18
  model = AutoModelForSeq2SeqLM.from_pretrained("TalTechNLP/mBART-ERRnews")
 
19
  text = "Riigikogu rahanduskomisjon võttis esmaspäeval maha riigieelarvesse esitatud investeeringuettepanekutest siseministeeriumi investeeringud koolidele ja lasteaedadele, sest komisjoni hinnangul ei peaks siseministeerium tegelema investeeringutega väljaspoole oma vastutusala. Komisjoni esimees Aivar Kokk ütles, et komisjon lähtus otsuse tegemisel riigikontrolör Janar Holmi soovitusest ja seadustest."
20
  inputs = tokenizer(text, return_tensors='pt', max_length=1024)
 
21
  summary_ids = model.generate(inputs['input_ids'])
22
  summary = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
23
  ```
@@ -30,7 +33,7 @@ Estonian news story transcripts and summaries.
30
  ### Training
31
 
32
  The model was trained on 2 cloud GPUs with a batch size of 16 for 16 epochs. The optimizer
33
- used is Adam with a learning rate of 5e-05, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\).
34
 
35
  ## Evaluation results
36
 
 
14
 
15
  ```python
16
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
17
+
18
  tokenizer = AutoTokenizer.from_pretrained("TalTechNLP/mBART-ERRnews")
19
  model = AutoModelForSeq2SeqLM.from_pretrained("TalTechNLP/mBART-ERRnews")
20
+
21
  text = "Riigikogu rahanduskomisjon võttis esmaspäeval maha riigieelarvesse esitatud investeeringuettepanekutest siseministeeriumi investeeringud koolidele ja lasteaedadele, sest komisjoni hinnangul ei peaks siseministeerium tegelema investeeringutega väljaspoole oma vastutusala. Komisjoni esimees Aivar Kokk ütles, et komisjon lähtus otsuse tegemisel riigikontrolör Janar Holmi soovitusest ja seadustest."
22
  inputs = tokenizer(text, return_tensors='pt', max_length=1024)
23
+
24
  summary_ids = model.generate(inputs['input_ids'])
25
  summary = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
26
  ```
 
33
  ### Training
34
 
35
  The model was trained on 2 cloud GPUs with a batch size of 16 for 16 epochs. The optimizer
36
+ used is Adam with a learning rate of 5e-05, betas of 0.9 and 0.999.
37
 
38
  ## Evaluation results
39