File size: 2,149 Bytes
843dfc4 b617de6 843dfc4 04cb4d9 5c1488f 1176c49 80bd7a5 a8e8a28 227a2cf 615c15a 7e71f73 b617de6 843dfc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: TamerAbdelaziz/distilbert-base-uncased-finetuned-IMDB_BERT_10
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# TamerAbdelaziz/distilbert-base-uncased-finetuned-IMDB_BERT_10
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0067
- Validation Loss: 0.3379
- Train Accuracy: 0.9354
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 12500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.2338 | 0.1838 | 0.9304 | 0 |
| 0.1379 | 0.1821 | 0.931 | 1 |
| 0.0748 | 0.1896 | 0.9334 | 2 |
| 0.0427 | 0.2671 | 0.9318 | 3 |
| 0.0260 | 0.2814 | 0.933 | 4 |
| 0.0198 | 0.3015 | 0.9338 | 5 |
| 0.0134 | 0.3239 | 0.9342 | 6 |
| 0.0104 | 0.3797 | 0.9268 | 7 |
| 0.0088 | 0.3347 | 0.9338 | 8 |
| 0.0067 | 0.3379 | 0.9354 | 9 |
### Framework versions
- Transformers 4.33.2
- TensorFlow 2.8.1
- Datasets 2.14.5
- Tokenizers 0.13.3
|