--- tags: - generated_from_trainer datasets: - funsd-layoutlmv3 model-index: - name: lilt-ru-bio results: [] --- # lilt-ru-bio This model was trained from scratch on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 1.4705 - Answer: {'precision': 0.8711583924349882, 'recall': 0.9020807833537332, 'f1': 0.8863499699338545, 'number': 817} - Header: {'precision': 0.6336633663366337, 'recall': 0.5378151260504201, 'f1': 0.5818181818181819, 'number': 119} - Question: {'precision': 0.8966455122393472, 'recall': 0.9182915506035283, 'f1': 0.9073394495412844, 'number': 1077} - Overall Precision: 0.8732 - Overall Recall: 0.8892 - Overall F1: 0.8811 - Overall Accuracy: 0.8223 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.0199 | 5.26 | 100 | 1.3310 | {'precision': 0.8788627935723115, 'recall': 0.8702570379436965, 'f1': 0.8745387453874538, 'number': 817} | {'precision': 0.6288659793814433, 'recall': 0.5126050420168067, 'f1': 0.5648148148148148, 'number': 119} | {'precision': 0.8519148936170213, 'recall': 0.9294336118848654, 'f1': 0.8889875666074601, 'number': 1077} | 0.8520 | 0.8808 | 0.8661 | 0.8038 | | 0.0085 | 10.53 | 200 | 1.5426 | {'precision': 0.8631578947368421, 'recall': 0.9033047735618115, 'f1': 0.8827751196172249, 'number': 817} | {'precision': 0.5641025641025641, 'recall': 0.5546218487394958, 'f1': 0.559322033898305, 'number': 119} | {'precision': 0.899812734082397, 'recall': 0.8922934076137419, 'f1': 0.8960372960372962, 'number': 1077} | 0.8652 | 0.8768 | 0.8710 | 0.8120 | | 0.0047 | 15.79 | 300 | 1.5043 | {'precision': 0.8698710433763188, 'recall': 0.9082007343941249, 'f1': 0.8886227544910178, 'number': 817} | {'precision': 0.5508474576271186, 'recall': 0.5462184873949579, 'f1': 0.5485232067510548, 'number': 119} | {'precision': 0.8980716253443526, 'recall': 0.9080779944289693, 'f1': 0.9030470914127423, 'number': 1077} | 0.8665 | 0.8867 | 0.8765 | 0.8086 | | 0.0017 | 21.05 | 400 | 1.4705 | {'precision': 0.8711583924349882, 'recall': 0.9020807833537332, 'f1': 0.8863499699338545, 'number': 817} | {'precision': 0.6336633663366337, 'recall': 0.5378151260504201, 'f1': 0.5818181818181819, 'number': 119} | {'precision': 0.8966455122393472, 'recall': 0.9182915506035283, 'f1': 0.9073394495412844, 'number': 1077} | 0.8732 | 0.8892 | 0.8811 | 0.8223 | | 0.0012 | 26.32 | 500 | 1.5088 | {'precision': 0.8744075829383886, 'recall': 0.9033047735618115, 'f1': 0.8886213124623721, 'number': 817} | {'precision': 0.5904761904761905, 'recall': 0.5210084033613446, 'f1': 0.5535714285714286, 'number': 119} | {'precision': 0.8935395814376706, 'recall': 0.9117920148560817, 'f1': 0.9025735294117648, 'number': 1077} | 0.8701 | 0.8852 | 0.8776 | 0.8174 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.13.2