Tatiana239 commited on
Commit
824aedf
1 Parent(s): 0d9fb25

End of training

Browse files
README.md CHANGED
@@ -13,19 +13,18 @@ should probably proofread and complete it, then remove this comment. -->
13
 
14
  This model was trained from scratch on the None dataset.
15
  It achieves the following results on the evaluation set:
16
- - Loss: 2.5944
17
- - Comment: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
18
- - Date: {'precision': 0.875, 'recall': 0.2413793103448276, 'f1': 0.3783783783783784, 'number': 145}
19
- - Labname: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
20
- - Laboratory: {'precision': 0.6, 'recall': 0.13636363636363635, 'f1': 0.22222222222222218, 'number': 22}
21
- - Measure: {'precision': 0.4857142857142857, 'recall': 0.4594594594594595, 'f1': 0.47222222222222227, 'number': 37}
22
- - Name: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2}
23
- - Ref Value: {'precision': 0.3398876404494382, 'recall': 0.8832116788321168, 'f1': 0.4908722109533469, 'number': 137}
24
- - Result: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5}
25
- - Overall Precision: 0.4027
26
- - Overall Recall: 0.4986
27
- - Overall F1: 0.4456
28
- - Overall Accuracy: 0.4200
29
 
30
  ## Model description
31
 
@@ -55,13 +54,13 @@ The following hyperparameters were used during training:
55
 
56
  ### Training results
57
 
58
- | Training Loss | Epoch | Step | Validation Loss | Comment | Date | Labname | Laboratory | Measure | Name | Ref Value | Result | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
- |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
- | 2.51 | 5.0 | 5 | 2.6583 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 145} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 22} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 37} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.2601279317697228, 'recall': 0.8905109489051095, 'f1': 0.40264026402640263, 'number': 137} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | 0.2601 | 0.3456 | 0.2968 | 0.2601 |
61
- | 1.3802 | 10.0 | 10 | 2.5067 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 145} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 22} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 37} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.2601279317697228, 'recall': 0.8905109489051095, 'f1': 0.40264026402640263, 'number': 137} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | 0.2601 | 0.3456 | 0.2968 | 0.2601 |
62
- | 0.9957 | 15.0 | 15 | 2.4104 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.5396825396825397, 'recall': 0.23448275862068965, 'f1': 0.3269230769230769, 'number': 145} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 22} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 37} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.30049261083743845, 'recall': 0.8905109489051095, 'f1': 0.44935543278084716, 'number': 137} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | 0.3326 | 0.4419 | 0.3796 | 0.3326 |
63
- | 0.6893 | 20.0 | 20 | 2.5476 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.5352112676056338, 'recall': 0.2620689655172414, 'f1': 0.3518518518518518, 'number': 145} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 22} | {'precision': 0.5, 'recall': 0.3783783783783784, 'f1': 0.4307692307692308, 'number': 37} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.33152173913043476, 'recall': 0.8905109489051095, 'f1': 0.48316831683168315, 'number': 137} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | 0.3726 | 0.4929 | 0.4244 | 0.3817 |
64
- | 0.527 | 25.0 | 25 | 2.5944 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.875, 'recall': 0.2413793103448276, 'f1': 0.3783783783783784, 'number': 145} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.6, 'recall': 0.13636363636363635, 'f1': 0.22222222222222218, 'number': 22} | {'precision': 0.4857142857142857, 'recall': 0.4594594594594595, 'f1': 0.47222222222222227, 'number': 37} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.3398876404494382, 'recall': 0.8832116788321168, 'f1': 0.4908722109533469, 'number': 137} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | 0.4027 | 0.4986 | 0.4456 | 0.4200 |
65
 
66
 
67
  ### Framework versions
 
13
 
14
  This model was trained from scratch on the None dataset.
15
  It achieves the following results on the evaluation set:
16
+ - Loss: 0.4919
17
+ - Comment: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6}
18
+ - Date: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
19
+ - Labname: {'precision': 0.5833333333333334, 'recall': 0.6666666666666666, 'f1': 0.6222222222222222, 'number': 21}
20
+ - Laboratory: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
21
+ - Measure: {'precision': 0.5833333333333334, 'recall': 0.7777777777777778, 'f1': 0.6666666666666666, 'number': 9}
22
+ - Ref Value: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8}
23
+ - Result: {'precision': 0.25, 'recall': 0.25, 'f1': 0.25, 'number': 12}
24
+ - Overall Precision: 0.4528
25
+ - Overall Recall: 0.4
26
+ - Overall F1: 0.4248
27
+ - Overall Accuracy: 0.8698
 
28
 
29
  ## Model description
30
 
 
54
 
55
  ### Training results
56
 
57
+ | Training Loss | Epoch | Step | Validation Loss | Comment | Date | Labname | Laboratory | Measure | Ref Value | Result | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 2.4398 | 5.0 | 5 | 1.5928 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0 | 0.0 | 0.0 | 0.5850 |
60
+ | 1.4788 | 10.0 | 10 | 1.1857 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.0 | 0.0 | 0.0 | 0.6512 |
61
+ | 0.9806 | 15.0 | 15 | 0.8188 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.21875, 'recall': 0.3333333333333333, 'f1': 0.2641509433962264, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.5, 'recall': 0.1111111111111111, 'f1': 0.1818181818181818, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | 0.1667 | 0.1333 | 0.1481 | 0.7660 |
62
+ | 0.6358 | 20.0 | 20 | 0.5763 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.41935483870967744, 'recall': 0.6190476190476191, 'f1': 0.5, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.7, 'recall': 0.7777777777777778, 'f1': 0.7368421052631577, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.42857142857142855, 'recall': 0.25, 'f1': 0.3157894736842105, 'number': 12} | 0.4182 | 0.3833 | 0.4 | 0.8675 |
63
+ | 0.4712 | 25.0 | 25 | 0.4919 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.5833333333333334, 'recall': 0.6666666666666666, 'f1': 0.6222222222222222, 'number': 21} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.5833333333333334, 'recall': 0.7777777777777778, 'f1': 0.6666666666666666, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.25, 'recall': 0.25, 'f1': 0.25, 'number': 12} | 0.4528 | 0.4 | 0.4248 | 0.8698 |
64
 
65
 
66
  ### Framework versions
logs/events.out.tfevents.1674460236.pc092u.2809614.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:95dff08067873813c1a6db6685658f9827e79abede352212188ce2317deb8e58
3
- size 7707
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e25cf186a484b509c621d010e397cbf5d3303af741f51c5a00f5f32dd2e2bca
3
+ size 8055
logs/events.out.tfevents.1674460272.pc092u.2809614.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56173f3dcf8f7193749d61936eedfa4f60f10c09cbef670828f36102a03edb43
3
+ size 535