update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-large-xls-r-300m-Arabic-colab
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-large-xls-r-300m-Arabic-colab
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0001
|
20 |
+
- Wer: 0.0813
|
21 |
+
- Cer: 0.0362
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0005
|
41 |
+
- train_batch_size: 16
|
42 |
+
- eval_batch_size: 6
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 64
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_steps: 250
|
49 |
+
- num_epochs: 30.0
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
|
56 |
+
| 0.0166 | 1.0 | 51 | 0.0020 | 0.0944 | 0.0431 |
|
57 |
+
| 0.015 | 2.0 | 102 | 0.0018 | 0.0939 | 0.0434 |
|
58 |
+
| 0.0223 | 3.0 | 153 | 0.0034 | 0.0705 | 0.0311 |
|
59 |
+
| 0.0351 | 4.0 | 204 | 0.0089 | 0.1050 | 0.0414 |
|
60 |
+
| 0.0473 | 5.0 | 255 | 0.0051 | 0.1224 | 0.0614 |
|
61 |
+
| 0.0406 | 6.0 | 306 | 0.0084 | 0.1185 | 0.0547 |
|
62 |
+
| 0.0412 | 7.0 | 357 | 0.0030 | 0.0640 | 0.0254 |
|
63 |
+
| 0.0301 | 8.0 | 408 | 0.0157 | 0.0708 | 0.0219 |
|
64 |
+
| 0.0295 | 9.0 | 459 | 0.0027 | 0.0716 | 0.0298 |
|
65 |
+
| 0.0239 | 10.0 | 510 | 0.0077 | 0.0868 | 0.0354 |
|
66 |
+
| 0.0266 | 11.0 | 561 | 0.0017 | 0.0733 | 0.0301 |
|
67 |
+
| 0.0154 | 12.0 | 612 | 0.0015 | 0.0961 | 0.0385 |
|
68 |
+
| 0.0187 | 13.0 | 663 | 0.0006 | 0.1100 | 0.0465 |
|
69 |
+
| 0.0156 | 14.0 | 714 | 0.0015 | 0.1030 | 0.0426 |
|
70 |
+
| 0.013 | 15.0 | 765 | 0.0014 | 0.1068 | 0.0451 |
|
71 |
+
| 0.0136 | 16.0 | 816 | 0.0013 | 0.1066 | 0.0434 |
|
72 |
+
| 0.0123 | 17.0 | 867 | 0.0008 | 0.1240 | 0.0587 |
|
73 |
+
| 0.0098 | 18.0 | 918 | 0.0006 | 0.1140 | 0.0570 |
|
74 |
+
| 0.0108 | 19.0 | 969 | 0.0005 | 0.0843 | 0.0364 |
|
75 |
+
| 0.009 | 20.0 | 1020 | 0.0002 | 0.0954 | 0.0438 |
|
76 |
+
| 0.0083 | 21.0 | 1071 | 0.0003 | 0.0828 | 0.0377 |
|
77 |
+
| 0.0085 | 22.0 | 1122 | 0.0002 | 0.0648 | 0.0267 |
|
78 |
+
| 0.0073 | 23.0 | 1173 | 0.0003 | 0.0843 | 0.0373 |
|
79 |
+
| 0.0057 | 24.0 | 1224 | 0.0003 | 0.0822 | 0.0367 |
|
80 |
+
| 0.0039 | 25.0 | 1275 | 0.0002 | 0.0733 | 0.0329 |
|
81 |
+
| 0.0045 | 26.0 | 1326 | 0.0005 | 0.0754 | 0.0335 |
|
82 |
+
| 0.008 | 27.0 | 1377 | 0.0008 | 0.0803 | 0.0361 |
|
83 |
+
| 0.0045 | 28.0 | 1428 | 0.0001 | 0.0772 | 0.0340 |
|
84 |
+
| 0.0043 | 29.0 | 1479 | 0.0001 | 0.0808 | 0.0359 |
|
85 |
+
| 0.0042 | 30.0 | 1530 | 0.0001 | 0.0813 | 0.0362 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.26.1
|
91 |
+
- Pytorch 1.13.1+cu116
|
92 |
+
- Datasets 2.9.0
|
93 |
+
- Tokenizers 0.13.2
|