plip commited on
Commit
cb1c52d
1 Parent(s): 4456f8d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +307 -1
README.md CHANGED
@@ -1,3 +1,309 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: pixel-tiny-cont
6
+ results: []
7
  ---
8
+
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ # pixel-tiny-cont
13
+
14
+ This model was trained from scratch on the None dataset.
15
+ It achieves the following results on the evaluation set:
16
+ - Loss: 0.8016
17
+
18
+ ## Model description
19
+
20
+ More information needed
21
+
22
+ ## Intended uses & limitations
23
+
24
+ More information needed
25
+
26
+ ## Training and evaluation data
27
+
28
+ More information needed
29
+
30
+ ## Training procedure
31
+
32
+ ### Training hyperparameters
33
+
34
+ The following hyperparameters were used during training:
35
+ - learning_rate: 0.0006
36
+ - train_batch_size: 128
37
+ - eval_batch_size: 8
38
+ - seed: 42
39
+ - distributed_type: multi-GPU
40
+ - num_devices: 8
41
+ - total_train_batch_size: 1024
42
+ - total_eval_batch_size: 64
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: cosine
45
+ - lr_scheduler_warmup_ratio: 0.05
46
+ - training_steps: 250000
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss |
51
+ |:-------------:|:-----:|:------:|:---------------:|
52
+ | 0.7411 | 0.06 | 1000 | 0.9070 |
53
+ | 0.7395 | 0.12 | 2000 | 0.9064 |
54
+ | 0.7387 | 0.18 | 3000 | 0.9047 |
55
+ | 0.7382 | 0.25 | 4000 | 0.9015 |
56
+ | 0.7381 | 0.31 | 5000 | 0.9044 |
57
+ | 0.7379 | 0.37 | 6000 | 0.9042 |
58
+ | 0.7379 | 0.43 | 7000 | 0.9054 |
59
+ | 0.7378 | 0.49 | 8000 | 0.9035 |
60
+ | 0.7378 | 0.55 | 9000 | 0.9026 |
61
+ | 0.7371 | 0.61 | 10000 | 0.9038 |
62
+ | 0.7369 | 0.67 | 11000 | 0.9027 |
63
+ | 0.7368 | 0.74 | 12000 | 0.9022 |
64
+ | 0.7368 | 0.8 | 13000 | 0.8987 |
65
+ | 0.7374 | 0.86 | 14000 | 0.9014 |
66
+ | 0.7369 | 0.92 | 15000 | 0.9002 |
67
+ | 0.7369 | 0.98 | 16000 | 0.9002 |
68
+ | 0.7372 | 1.04 | 17000 | 0.9019 |
69
+ | 0.737 | 1.1 | 18000 | 0.9001 |
70
+ | 0.737 | 1.16 | 19000 | 0.9006 |
71
+ | 0.7369 | 1.23 | 20000 | 0.9007 |
72
+ | 0.7365 | 1.29 | 21000 | 0.8698 |
73
+ | 0.7363 | 1.35 | 22000 | 0.8700 |
74
+ | 0.7366 | 1.41 | 23000 | 0.9021 |
75
+ | 0.7362 | 1.47 | 24000 | 0.8763 |
76
+ | 0.7082 | 1.53 | 25000 | 0.8719 |
77
+ | 0.6774 | 1.59 | 26000 | 0.8876 |
78
+ | 0.6525 | 1.65 | 27000 | 0.8905 |
79
+ | 0.6022 | 1.72 | 28000 | 0.8856 |
80
+ | 0.5874 | 1.78 | 29000 | 0.8794 |
81
+ | 0.5765 | 1.84 | 30000 | 0.8806 |
82
+ | 0.5685 | 1.9 | 31000 | 0.8747 |
83
+ | 0.564 | 1.96 | 32000 | 0.8779 |
84
+ | 0.5606 | 2.02 | 33000 | 0.8762 |
85
+ | 0.5574 | 2.08 | 34000 | 0.8703 |
86
+ | 0.5528 | 2.14 | 35000 | 0.8664 |
87
+ | 0.5494 | 2.21 | 36000 | 0.8717 |
88
+ | 0.5448 | 2.27 | 37000 | 0.8673 |
89
+ | 0.5419 | 2.33 | 38000 | 0.8637 |
90
+ | 0.5385 | 2.39 | 39000 | 0.8634 |
91
+ | 0.536 | 2.45 | 40000 | 0.8661 |
92
+ | 0.5336 | 2.51 | 41000 | 0.8631 |
93
+ | 0.5316 | 2.57 | 42000 | 0.8606 |
94
+ | 0.5297 | 2.63 | 43000 | 0.8589 |
95
+ | 0.5305 | 2.7 | 44000 | 0.8570 |
96
+ | 0.5262 | 2.76 | 45000 | 0.8559 |
97
+ | 0.5247 | 2.82 | 46000 | 0.8634 |
98
+ | 0.5235 | 2.88 | 47000 | 0.8606 |
99
+ | 0.5227 | 2.94 | 48000 | 0.8610 |
100
+ | 0.5206 | 3.0 | 49000 | 0.8610 |
101
+ | 0.5194 | 3.06 | 50000 | 0.8611 |
102
+ | 0.5183 | 3.12 | 51000 | 0.8579 |
103
+ | 0.5175 | 3.19 | 52000 | 0.8598 |
104
+ | 0.5163 | 3.25 | 53000 | 0.8521 |
105
+ | 0.5156 | 3.31 | 54000 | 0.8550 |
106
+ | 0.5148 | 3.37 | 55000 | 0.8504 |
107
+ | 0.5139 | 3.43 | 56000 | 0.8530 |
108
+ | 0.5133 | 3.49 | 57000 | 0.8589 |
109
+ | 0.5126 | 3.55 | 58000 | 0.8561 |
110
+ | 0.5119 | 3.62 | 59000 | 0.8574 |
111
+ | 0.5127 | 3.68 | 60000 | 0.8624 |
112
+ | 0.5105 | 3.74 | 61000 | 0.8522 |
113
+ | 0.5099 | 3.8 | 62000 | 0.8550 |
114
+ | 0.5094 | 3.86 | 63000 | 0.8537 |
115
+ | 0.509 | 3.92 | 64000 | 0.8535 |
116
+ | 0.5091 | 3.98 | 65000 | 0.8592 |
117
+ | 0.5079 | 4.04 | 66000 | 0.8554 |
118
+ | 0.5074 | 4.11 | 67000 | 0.8516 |
119
+ | 0.5069 | 4.17 | 68000 | 0.8491 |
120
+ | 0.5066 | 4.23 | 69000 | 0.8571 |
121
+ | 0.5068 | 4.29 | 70000 | 0.8536 |
122
+ | 0.5066 | 4.35 | 71000 | 0.9288 |
123
+ | 0.5051 | 4.41 | 72000 | 0.8597 |
124
+ | 0.5045 | 4.47 | 73000 | 0.8555 |
125
+ | 0.5043 | 4.53 | 74000 | 0.8547 |
126
+ | 0.5039 | 4.6 | 75000 | 0.8561 |
127
+ | 0.504 | 4.66 | 76000 | 0.8541 |
128
+ | 0.5026 | 4.72 | 77000 | 0.8490 |
129
+ | 0.5024 | 4.78 | 78000 | 0.8499 |
130
+ | 0.5019 | 4.84 | 79000 | 0.8522 |
131
+ | 0.5014 | 4.9 | 80000 | 0.8508 |
132
+ | 0.5008 | 4.96 | 81000 | 0.8512 |
133
+ | 0.5002 | 5.02 | 82000 | 0.8470 |
134
+ | 0.4995 | 5.09 | 83000 | 0.8462 |
135
+ | 0.4991 | 5.15 | 84000 | 0.8455 |
136
+ | 0.4982 | 5.21 | 85000 | 0.8465 |
137
+ | 0.4978 | 5.27 | 86000 | 0.8434 |
138
+ | 0.4969 | 5.33 | 87000 | 0.8432 |
139
+ | 0.4964 | 5.39 | 88000 | 0.8417 |
140
+ | 0.4957 | 5.45 | 89000 | 0.8363 |
141
+ | 0.495 | 5.51 | 90000 | 0.8392 |
142
+ | 0.4946 | 5.58 | 91000 | 0.8401 |
143
+ | 0.4935 | 5.64 | 92000 | 0.8373 |
144
+ | 0.4929 | 5.7 | 93000 | 0.8401 |
145
+ | 0.492 | 5.76 | 94000 | 0.8356 |
146
+ | 0.4912 | 5.82 | 95000 | 0.8334 |
147
+ | 0.4904 | 5.88 | 96000 | 0.8281 |
148
+ | 0.4898 | 5.94 | 97000 | 0.8338 |
149
+ | 0.4891 | 6.0 | 98000 | 0.8300 |
150
+ | 0.4882 | 6.07 | 99000 | 0.8262 |
151
+ | 0.4876 | 6.13 | 100000 | 0.8172 |
152
+ | 0.4868 | 6.19 | 101000 | 0.8240 |
153
+ | 0.4861 | 6.25 | 102000 | 0.8212 |
154
+ | 0.4854 | 6.31 | 103000 | 0.8243 |
155
+ | 0.4847 | 6.37 | 104000 | 0.8228 |
156
+ | 0.4841 | 6.43 | 105000 | 0.8185 |
157
+ | 0.4837 | 6.5 | 106000 | 0.8177 |
158
+ | 0.4827 | 6.56 | 107000 | 0.8140 |
159
+ | 0.4819 | 6.62 | 108000 | 0.8147 |
160
+ | 0.4813 | 6.68 | 109000 | 0.8172 |
161
+ | 0.4807 | 6.74 | 110000 | 0.8149 |
162
+ | 0.4801 | 6.8 | 111000 | 0.8152 |
163
+ | 0.4792 | 6.86 | 112000 | 0.8089 |
164
+ | 0.4785 | 6.92 | 113000 | 0.8084 |
165
+ | 0.4777 | 6.99 | 114000 | 0.8103 |
166
+ | 0.477 | 7.05 | 115000 | 0.8104 |
167
+ | 0.4772 | 7.11 | 116000 | 0.8142 |
168
+ | 0.4754 | 7.17 | 117000 | 0.8159 |
169
+ | 0.4748 | 7.23 | 118000 | 0.8092 |
170
+ | 0.4738 | 7.29 | 119000 | 0.8036 |
171
+ | 0.473 | 7.35 | 120000 | 0.8085 |
172
+ | 0.4724 | 7.41 | 121000 | 0.8084 |
173
+ | 0.4714 | 7.48 | 122000 | 0.8066 |
174
+ | 0.4705 | 7.54 | 123000 | 0.8094 |
175
+ | 0.4699 | 7.6 | 124000 | 0.8095 |
176
+ | 0.4693 | 7.66 | 125000 | 0.8101 |
177
+ | 0.4685 | 7.72 | 126000 | 0.8092 |
178
+ | 0.4679 | 7.78 | 127000 | 0.8025 |
179
+ | 0.4672 | 7.84 | 128000 | 0.8000 |
180
+ | 0.4665 | 7.9 | 129000 | 0.8020 |
181
+ | 0.4659 | 7.97 | 130000 | 0.8022 |
182
+ | 0.4653 | 8.03 | 131000 | 0.8071 |
183
+ | 0.4647 | 8.09 | 132000 | 0.7994 |
184
+ | 0.4639 | 8.15 | 133000 | 0.8034 |
185
+ | 0.4634 | 8.21 | 134000 | 0.8022 |
186
+ | 0.4656 | 8.27 | 135000 | 0.8052 |
187
+ | 0.4623 | 8.33 | 136000 | 0.7989 |
188
+ | 0.4617 | 8.39 | 137000 | 0.7993 |
189
+ | 0.4612 | 8.46 | 138000 | 0.8003 |
190
+ | 0.4608 | 8.52 | 139000 | 0.7990 |
191
+ | 0.4603 | 8.58 | 140000 | 0.8074 |
192
+ | 0.4597 | 8.64 | 141000 | 0.8089 |
193
+ | 0.4591 | 8.7 | 142000 | 0.8040 |
194
+ | 0.4586 | 8.76 | 143000 | 0.7993 |
195
+ | 0.4584 | 8.82 | 144000 | 0.8004 |
196
+ | 0.4594 | 8.88 | 145000 | 0.7991 |
197
+ | 0.4574 | 8.95 | 146000 | 0.7956 |
198
+ | 0.4571 | 9.01 | 147000 | 0.7948 |
199
+ | 0.4565 | 9.07 | 148000 | 0.7982 |
200
+ | 0.4563 | 9.13 | 149000 | 0.7960 |
201
+ | 0.4555 | 9.19 | 150000 | 0.8043 |
202
+ | 0.4551 | 9.25 | 151000 | 0.8021 |
203
+ | 0.4549 | 9.31 | 152000 | 0.7972 |
204
+ | 0.4545 | 9.38 | 153000 | 0.8003 |
205
+ | 0.4542 | 9.44 | 154000 | 0.8000 |
206
+ | 0.4539 | 9.5 | 155000 | 0.7960 |
207
+ | 0.4533 | 9.56 | 156000 | 0.8035 |
208
+ | 0.453 | 9.62 | 157000 | 0.7953 |
209
+ | 0.4527 | 9.68 | 158000 | 0.7937 |
210
+ | 0.4524 | 9.74 | 159000 | 0.8021 |
211
+ | 0.4519 | 9.8 | 160000 | 0.8028 |
212
+ | 0.4517 | 9.87 | 161000 | 0.8006 |
213
+ | 0.4514 | 9.93 | 162000 | 0.8067 |
214
+ | 0.4512 | 9.99 | 163000 | 0.7990 |
215
+ | 0.4508 | 10.05 | 164000 | 0.8041 |
216
+ | 0.4504 | 10.11 | 165000 | 0.7995 |
217
+ | 0.4501 | 10.17 | 166000 | 0.7979 |
218
+ | 0.4499 | 10.23 | 167000 | 0.7969 |
219
+ | 0.4497 | 10.29 | 168000 | 0.8041 |
220
+ | 0.4495 | 10.36 | 169000 | 0.8050 |
221
+ | 0.4492 | 10.42 | 170000 | 0.7999 |
222
+ | 0.4494 | 10.48 | 171000 | 0.7992 |
223
+ | 0.4486 | 10.54 | 172000 | 0.8019 |
224
+ | 0.4485 | 10.6 | 173000 | 0.8026 |
225
+ | 0.4483 | 10.66 | 174000 | 0.8009 |
226
+ | 0.448 | 10.72 | 175000 | 0.8022 |
227
+ | 0.4479 | 10.78 | 176000 | 0.8016 |
228
+ | 0.4476 | 10.85 | 177000 | 0.7988 |
229
+ | 0.4474 | 10.91 | 178000 | 0.8025 |
230
+ | 0.4471 | 10.97 | 179000 | 0.8035 |
231
+ | 0.4471 | 11.03 | 180000 | 0.7983 |
232
+ | 0.4467 | 11.09 | 181000 | 0.8010 |
233
+ | 0.4463 | 11.15 | 182000 | 0.8035 |
234
+ | 0.4463 | 11.21 | 183000 | 0.8049 |
235
+ | 0.4462 | 11.27 | 184000 | 0.7998 |
236
+ | 0.4459 | 11.34 | 185000 | 0.7988 |
237
+ | 0.4457 | 11.4 | 186000 | 0.8064 |
238
+ | 0.4456 | 11.46 | 187000 | 0.8042 |
239
+ | 0.4454 | 11.52 | 188000 | 0.7998 |
240
+ | 0.4453 | 11.58 | 189000 | 0.8026 |
241
+ | 0.4449 | 11.64 | 190000 | 0.7993 |
242
+ | 0.4448 | 11.7 | 191000 | 0.8037 |
243
+ | 0.4448 | 11.76 | 192000 | 0.8038 |
244
+ | 0.4445 | 11.83 | 193000 | 0.8010 |
245
+ | 0.4442 | 11.89 | 194000 | 0.7977 |
246
+ | 0.4443 | 11.95 | 195000 | 0.8008 |
247
+ | 0.4441 | 12.01 | 196000 | 0.8048 |
248
+ | 0.4439 | 12.07 | 197000 | 0.8034 |
249
+ | 0.4438 | 12.13 | 198000 | 0.8052 |
250
+ | 0.4437 | 12.19 | 199000 | 0.8041 |
251
+ | 0.4434 | 12.25 | 200000 | 0.8001 |
252
+ | 0.4434 | 12.32 | 201000 | 0.8013 |
253
+ | 0.4432 | 12.38 | 202000 | 0.7987 |
254
+ | 0.443 | 12.44 | 203000 | 0.7962 |
255
+ | 0.443 | 12.5 | 204000 | 0.8017 |
256
+ | 0.4429 | 12.56 | 205000 | 0.7996 |
257
+ | 0.4428 | 12.62 | 206000 | 0.7997 |
258
+ | 0.4425 | 12.68 | 207000 | 0.8017 |
259
+ | 0.4424 | 12.75 | 208000 | 0.8008 |
260
+ | 0.4424 | 12.81 | 209000 | 0.8052 |
261
+ | 0.4422 | 12.87 | 210000 | 0.8004 |
262
+ | 0.4421 | 12.93 | 211000 | 0.8023 |
263
+ | 0.4421 | 12.99 | 212000 | 0.8014 |
264
+ | 0.442 | 13.05 | 213000 | 0.7999 |
265
+ | 0.4418 | 13.11 | 214000 | 0.8019 |
266
+ | 0.4417 | 13.17 | 215000 | 0.7996 |
267
+ | 0.4416 | 13.24 | 216000 | 0.8007 |
268
+ | 0.4414 | 13.3 | 217000 | 0.8029 |
269
+ | 0.4415 | 13.36 | 218000 | 0.7990 |
270
+ | 0.4413 | 13.42 | 219000 | 0.7997 |
271
+ | 0.4413 | 13.48 | 220000 | 0.7997 |
272
+ | 0.4412 | 13.54 | 221000 | 0.7996 |
273
+ | 0.4411 | 13.6 | 222000 | 0.8003 |
274
+ | 0.4411 | 13.66 | 223000 | 0.7993 |
275
+ | 0.4411 | 13.73 | 224000 | 0.8005 |
276
+ | 0.4409 | 13.79 | 225000 | 0.8013 |
277
+ | 0.4409 | 13.85 | 226000 | 0.8016 |
278
+ | 0.4409 | 13.91 | 227000 | 0.7994 |
279
+ | 0.4408 | 13.97 | 228000 | 0.8023 |
280
+ | 0.4407 | 14.03 | 229000 | 0.8013 |
281
+ | 0.4406 | 14.09 | 230000 | 0.8038 |
282
+ | 0.4408 | 14.15 | 231000 | 0.7994 |
283
+ | 0.4406 | 14.22 | 232000 | 0.8007 |
284
+ | 0.4404 | 14.28 | 233000 | 0.8006 |
285
+ | 0.4403 | 14.34 | 234000 | 0.7987 |
286
+ | 0.4405 | 14.4 | 235000 | 0.8010 |
287
+ | 0.4404 | 14.46 | 236000 | 0.7982 |
288
+ | 0.4404 | 14.52 | 237000 | 0.7985 |
289
+ | 0.4403 | 14.58 | 238000 | 0.8016 |
290
+ | 0.4402 | 14.64 | 239000 | 0.8025 |
291
+ | 0.4402 | 14.71 | 240000 | 0.8020 |
292
+ | 0.4401 | 14.77 | 241000 | 0.8009 |
293
+ | 0.4401 | 14.83 | 242000 | 0.8015 |
294
+ | 0.4401 | 14.89 | 243000 | 0.8010 |
295
+ | 0.44 | 14.95 | 244000 | 0.7996 |
296
+ | 0.4402 | 15.01 | 245000 | 0.8014 |
297
+ | 0.44 | 15.07 | 246000 | 0.8007 |
298
+ | 0.44 | 15.13 | 247000 | 0.7984 |
299
+ | 0.44 | 15.2 | 248000 | 0.8009 |
300
+ | 0.4399 | 15.26 | 249000 | 0.8006 |
301
+ | 0.4399 | 15.32 | 250000 | 0.8016 |
302
+
303
+
304
+ ### Framework versions
305
+
306
+ - Transformers 4.17.0
307
+ - Pytorch 1.11.0
308
+ - Datasets 2.1.1.dev0
309
+ - Tokenizers 0.12.1