|
import os
|
|
from typing import Dict, List, Any
|
|
from PIL import Image
|
|
import jax
|
|
from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel, VisionEncoderDecoderModel
|
|
import torch
|
|
|
|
|
|
class PreTrainedPipeline():
|
|
|
|
def __init__(self, path=""):
|
|
|
|
model_dir = path
|
|
|
|
|
|
self.model = VisionEncoderDecoderModel.from_pretrained(model_dir)
|
|
self.feature_extractor = ViTFeatureExtractor.from_pretrained(model_dir)
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
|
|
|
max_length = 16
|
|
num_beams = 4
|
|
|
|
self.gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "return_dict_in_generate": True, "output_scores": True}
|
|
|
|
self.model.to("cpu")
|
|
self.model.eval()
|
|
|
|
|
|
def _generate(pixel_values):
|
|
|
|
with torch.no_grad():
|
|
|
|
outputs = self.model.generate(pixel_values, **self.gen_kwargs)
|
|
output_ids = outputs.sequences
|
|
sequences_scores = outputs.sequences_scores
|
|
|
|
return output_ids, sequences_scores
|
|
|
|
self.generate = _generate
|
|
|
|
|
|
image_path = os.path.join(path, 'val_000000039769.jpg')
|
|
image = Image.open(image_path)
|
|
self(image)
|
|
image.close()
|
|
|
|
def __call__(self, inputs: "Image.Image") -> List[str]:
|
|
"""
|
|
Args:
|
|
Return:
|
|
"""
|
|
|
|
|
|
pixel_values = self.feature_extractor(images=inputs, return_tensors="pt").pixel_values
|
|
|
|
output_ids, sequences_scores = self.generate(pixel_values)
|
|
preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
|
preds = [pred.strip() for pred in preds]
|
|
|
|
preds = [{"label": preds[0], "score": float(sequences_scores[0])}]
|
|
|
|
return preds
|
|
|