TeamResearch's picture
update model card README.md
5a868cf
|
raw
history blame
1.73 kB
---
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: bnb-sentiment-model-saagie
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.93
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bnb-sentiment-model-saagie
This model is a fine-tuned version of [j-hartmann/emotion-english-distilroberta-base](https://huggingface.co/j-hartmann/emotion-english-distilroberta-base) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2269
- Accuracy: 0.93
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3839 | 1.0 | 1500 | 0.2857 | 0.9333 |
| 0.1902 | 2.0 | 3000 | 0.2143 | 0.9417 |
| 0.1159 | 3.0 | 4500 | 0.2269 | 0.93 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.8.1
- Datasets 2.12.0
- Tokenizers 0.12.1