--- tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: bnb-sentiment-model-saagie results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: split metrics: - name: Accuracy type: accuracy value: 0.93 --- # bnb-sentiment-model-saagie This model is a fine-tuned version of [j-hartmann/emotion-english-distilroberta-base](https://huggingface.co/j-hartmann/emotion-english-distilroberta-base) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2269 - Accuracy: 0.93 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3839 | 1.0 | 1500 | 0.2857 | 0.9333 | | 0.1902 | 2.0 | 3000 | 0.2143 | 0.9417 | | 0.1159 | 3.0 | 4500 | 0.2269 | 0.93 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.8.1 - Datasets 2.12.0 - Tokenizers 0.12.1