|
{ |
|
"best_metric": 0.911697247706422, |
|
"best_model_checkpoint": "bert-base-uncased-finetuned-sst2/run-4/checkpoint-421", |
|
"epoch": 3.0, |
|
"eval_steps": 500, |
|
"global_step": 1263, |
|
"is_hyper_param_search": true, |
|
"is_local_process_zero": true, |
|
"is_world_process_zero": true, |
|
"log_history": [ |
|
{ |
|
"epoch": 1.0, |
|
"eval_accuracy": 0.911697247706422, |
|
"eval_loss": 0.22564278542995453, |
|
"eval_runtime": 2.3507, |
|
"eval_samples_per_second": 370.952, |
|
"eval_steps_per_second": 23.397, |
|
"step": 421 |
|
}, |
|
{ |
|
"epoch": 1.19, |
|
"grad_norm": 22.03980827331543, |
|
"learning_rate": 1.3592312257395198e-05, |
|
"loss": 0.3224, |
|
"step": 500 |
|
}, |
|
{ |
|
"epoch": 2.0, |
|
"eval_accuracy": 0.908256880733945, |
|
"eval_loss": 0.28558045625686646, |
|
"eval_runtime": 2.3703, |
|
"eval_samples_per_second": 367.886, |
|
"eval_steps_per_second": 23.204, |
|
"step": 842 |
|
}, |
|
{ |
|
"epoch": 2.38, |
|
"grad_norm": 6.299999713897705, |
|
"learning_rate": 7.85231552707628e-06, |
|
"loss": 0.1554, |
|
"step": 1000 |
|
}, |
|
{ |
|
"epoch": 3.0, |
|
"eval_accuracy": 0.9071100917431193, |
|
"eval_loss": 0.4138067066669464, |
|
"eval_runtime": 2.3765, |
|
"eval_samples_per_second": 366.925, |
|
"eval_steps_per_second": 23.143, |
|
"step": 1263 |
|
} |
|
], |
|
"logging_steps": 500, |
|
"max_steps": 1684, |
|
"num_input_tokens_seen": 0, |
|
"num_train_epochs": 4, |
|
"save_steps": 500, |
|
"total_flos": 290833299485880.0, |
|
"train_batch_size": 16, |
|
"trial_name": null, |
|
"trial_params": { |
|
"learning_rate": 1.9332308987714115e-05, |
|
"num_train_epochs": 4, |
|
"per_device_train_batch_size": 16, |
|
"seed": 7 |
|
} |
|
} |
|
|