|
{ |
|
"best_metric": 0.9231651376146789, |
|
"best_model_checkpoint": "bert-base-uncased-finetuned-sst2/run-1/checkpoint-421", |
|
"epoch": 3.0, |
|
"eval_steps": 500, |
|
"global_step": 1263, |
|
"is_hyper_param_search": true, |
|
"is_local_process_zero": true, |
|
"is_world_process_zero": true, |
|
"log_history": [ |
|
{ |
|
"epoch": 1.0, |
|
"eval_accuracy": 0.9231651376146789, |
|
"eval_loss": 0.24830688536167145, |
|
"eval_runtime": 2.2848, |
|
"eval_samples_per_second": 381.657, |
|
"eval_steps_per_second": 24.072, |
|
"step": 421 |
|
}, |
|
{ |
|
"epoch": 1.19, |
|
"grad_norm": 1.174437165260315, |
|
"learning_rate": 3.136892070081642e-05, |
|
"loss": 0.3128, |
|
"step": 500 |
|
}, |
|
{ |
|
"epoch": 2.0, |
|
"eval_accuracy": 0.9139908256880734, |
|
"eval_loss": 0.3306081295013428, |
|
"eval_runtime": 2.3075, |
|
"eval_samples_per_second": 377.901, |
|
"eval_steps_per_second": 23.835, |
|
"step": 842 |
|
}, |
|
{ |
|
"epoch": 2.38, |
|
"grad_norm": 14.713961601257324, |
|
"learning_rate": 1.0812616178656248e-05, |
|
"loss": 0.1105, |
|
"step": 1000 |
|
}, |
|
{ |
|
"epoch": 3.0, |
|
"eval_accuracy": 0.9139908256880734, |
|
"eval_loss": 0.4116528332233429, |
|
"eval_runtime": 2.3531, |
|
"eval_samples_per_second": 370.572, |
|
"eval_steps_per_second": 23.373, |
|
"step": 1263 |
|
} |
|
], |
|
"logging_steps": 500, |
|
"max_steps": 1263, |
|
"num_input_tokens_seen": 0, |
|
"num_train_epochs": 3, |
|
"save_steps": 500, |
|
"total_flos": 291460243797480.0, |
|
"train_batch_size": 16, |
|
"trial_name": null, |
|
"trial_params": { |
|
"learning_rate": 5.192522522297658e-05, |
|
"num_train_epochs": 3, |
|
"per_device_train_batch_size": 16, |
|
"seed": 6 |
|
} |
|
} |
|
|