File size: 1,897 Bytes
a287edb
c99bfe6
a287edb
c99bfe6
 
 
ceae344
 
 
 
 
c99bfe6
 
 
 
2aab856
1a18822
2aab856
 
ceae344
a287edb
c99bfe6
ceae344
c99bfe6
 
 
 
 
 
6842cd0
 
c99bfe6
6842cd0
c99bfe6
 
 
 
 
10e3a0c
c99bfe6
6842cd0
0ecf50f
1a18822
 
c99bfe6
0ecf50f
c99bfe6
6842cd0
c99bfe6
0ecf50f
2aab856
 
6842cd0
 
 
 
 
 
 
 
 
2aab856
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
library_name: PyLaia
license: mit
tags:
- PyLaia
- PyTorch
- atr
- htr
- ocr
- historical
- handwritten
metrics:
- CER
- WER
language:
- fr
- la
datasets:
- Teklia/Himanis
pipeline_tag: image-to-text
---

# PyLaia - Himanis

This model performs Handwritten Text Recognition in French on medieval documents.

## Model description

The model was trained using the PyLaia library on two medieval datasets:
* [Himanis](https://demo.arkindex.org/browse/5000e248-a624-4df1-8679-1b34679817ef?top_level=true&folder=true) (French);
* [HOME Alcar](https://demo.arkindex.org/browse/46b9b1f4-baeb-4342-a501-e2f15472a276?top_level=true&folder=true) (Latin).

Training images were resized with a fixed height of 128 pixels, keeping the original aspect ratio.

An external 6-gram character language model can be used to improve recognition. The language model is trained on the text from the Himanis training set.

## Evaluation results

On Himanis text lines, the model achieves the following results:

| set   | Language model | CER (%)    | WER (%) | lines   |
|:------|:---------------| ----------:| -------:|----------:|
| test  | no             | 9.87       |   29.25 |     2,241 |
| test  | yes            | 8.87       |   24.37 |     2,241 |

## How to use?

Please refer to the [PyLaia documentation](https://atr.pages.teklia.com/pylaia/usage/prediction/) to use this model.

## Cite us!

```bibtex
@inproceedings{pylaia2024,
    author = {Tarride, Solène and Schneider, Yoann and Generali-Lince, Marie and Boillet, Mélodie and Abadie, Bastien and Kermorvant, Christopher},
    title = {{Improving Automatic Text Recognition with Language Models in the PyLaia Open-Source Library}},
    booktitle = {Document Analysis and Recognition - ICDAR 2024},
    year = {2024},
    publisher = {Springer Nature Switzerland},
    address = {Cham},
    pages = {387--404},
    isbn = {978-3-031-70549-6}
}
```