File size: 1,897 Bytes
a287edb c99bfe6 a287edb c99bfe6 ceae344 c99bfe6 2aab856 1a18822 2aab856 ceae344 a287edb c99bfe6 ceae344 c99bfe6 6842cd0 c99bfe6 6842cd0 c99bfe6 10e3a0c c99bfe6 6842cd0 0ecf50f 1a18822 c99bfe6 0ecf50f c99bfe6 6842cd0 c99bfe6 0ecf50f 2aab856 6842cd0 2aab856 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
library_name: PyLaia
license: mit
tags:
- PyLaia
- PyTorch
- atr
- htr
- ocr
- historical
- handwritten
metrics:
- CER
- WER
language:
- fr
- la
datasets:
- Teklia/Himanis
pipeline_tag: image-to-text
---
# PyLaia - Himanis
This model performs Handwritten Text Recognition in French on medieval documents.
## Model description
The model was trained using the PyLaia library on two medieval datasets:
* [Himanis](https://demo.arkindex.org/browse/5000e248-a624-4df1-8679-1b34679817ef?top_level=true&folder=true) (French);
* [HOME Alcar](https://demo.arkindex.org/browse/46b9b1f4-baeb-4342-a501-e2f15472a276?top_level=true&folder=true) (Latin).
Training images were resized with a fixed height of 128 pixels, keeping the original aspect ratio.
An external 6-gram character language model can be used to improve recognition. The language model is trained on the text from the Himanis training set.
## Evaluation results
On Himanis text lines, the model achieves the following results:
| set | Language model | CER (%) | WER (%) | lines |
|:------|:---------------| ----------:| -------:|----------:|
| test | no | 9.87 | 29.25 | 2,241 |
| test | yes | 8.87 | 24.37 | 2,241 |
## How to use?
Please refer to the [PyLaia documentation](https://atr.pages.teklia.com/pylaia/usage/prediction/) to use this model.
## Cite us!
```bibtex
@inproceedings{pylaia2024,
author = {Tarride, Solène and Schneider, Yoann and Generali-Lince, Marie and Boillet, Mélodie and Abadie, Bastien and Kermorvant, Christopher},
title = {{Improving Automatic Text Recognition with Language Models in the PyLaia Open-Source Library}},
booktitle = {Document Analysis and Recognition - ICDAR 2024},
year = {2024},
publisher = {Springer Nature Switzerland},
address = {Cham},
pages = {387--404},
isbn = {978-3-031-70549-6}
}
``` |