File size: 1,601 Bytes
d13bba3 1cb898e d13bba3 1cb898e 18ad9e7 c329aae 18ad9e7 1cb898e 334c9df 18ad9e7 d13bba3 1cb898e 18ad9e7 1cb898e 334c9df 1cb898e 1a2c8fc 1cb898e 334c9df f031eb1 334c9df 1cb898e 334c9df 1cb898e 334c9df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
library_name: PyLaia
license: mit
tags:
- PyLaia
- PyTorch
- atr
- htr
- ocr
- modern
- handwritten
metrics:
- CER
- WER
language:
- en
datasets:
- Teklia/IAM
pipeline_tag: image-to-text
---
# PyLaia - IAM
This model performs Handwritten Text Recognition in English on modern documents.
## Model description
The model was trained using the PyLaia library on the RWTH split of the [IAM database](https://fki.tic.heia-fr.ch/databases/iam-handwriting-database).
For training, text-lines were resized with a fixed height of 128 pixels, keeping the original aspect ratio.
| split | N lines |
| ----- | ------: |
| train | 6,482 |
| val | 976 |
| test | 2,915 |
An external 6-gram character language model can be used to improve recognition. The language model is trained on the text from the IAM training set.
## Evaluation results
The model achieves the following results:
| set | Language model | CER (%) | WER (%) | N lines |
|:------|:---------------|:----------:|:-------:|----------:|
| test | no | 8.44 | 24.51 | 2915 |
| test | yes | 7.50 | 20.98 | 2915 |
## How to use
Please refer to the [documentation](https://atr.pages.teklia.com/pylaia/).
## Cite us
```bibtex
@inproceedings{pylaia-lib,
author = "Tarride, Solène and Schneider, Yoann and Generali, Marie and Boillet, Melodie and Abadie, Bastien and Kermorvant, Christopher",
title = "Improving Automatic Text Recognition with Language Models in the PyLaia Open-Source Library",
booktitle = "Submitted at ICDAR2024",
year = "2024"
}
```
|